These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 22361940)
21. Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation. Ferreras JA; Stirrett KL; Lu X; Ryu JS; Soll CE; Tan DS; Quadri LE Chem Biol; 2008 Jan; 15(1):51-61. PubMed ID: 18158259 [TBL] [Abstract][Full Text] [Related]
22. Purification and characterization of the acyltransferase involved in biosynthesis of the major mycobacterial cell envelope glycolipid--monoacylated phosphatidylinositol dimannoside. Svetlíková Z; Baráth P; Jackson M; Korduláková J; Mikušová K Protein Expr Purif; 2014 Aug; 100():33-9. PubMed ID: 24810911 [TBL] [Abstract][Full Text] [Related]
23. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Dubey VS; Sirakova TD; Kolattukudy PE Mol Microbiol; 2002 Sep; 45(5):1451-9. PubMed ID: 12207710 [TBL] [Abstract][Full Text] [Related]
24. Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis. Nguyen PC; Nguyen VS; Martin BP; Fourquet P; Camoin L; Spilling CD; Cavalier JF; Cambillau C; Canaan S J Mol Biol; 2018 Dec; 430(24):5120-5136. PubMed ID: 30292819 [TBL] [Abstract][Full Text] [Related]
27. PapA3 is an acyltransferase required for polyacyltrehalose biosynthesis in Mycobacterium tuberculosis. Hatzios SK; Schelle MW; Holsclaw CM; Behrens CR; Botyanszki Z; Lin FL; Carlson BL; Kumar P; Leary JA; Bertozzi CR J Biol Chem; 2009 May; 284(19):12745-51. PubMed ID: 19276083 [TBL] [Abstract][Full Text] [Related]
28. Mycobacterial MMAR_2193 catalyzes O-methylation of diverse polyketide cores. Giri GR; Saxena P PLoS One; 2022; 17(1):e0262241. PubMed ID: 34986163 [TBL] [Abstract][Full Text] [Related]
29. Modification of PapA5 acyltransferase substrate selectivity for optimization of short-chain alcohol-derived multimethyl-branched ester production in Escherichia coli. Roulet J; Galván V; Lara J; Salazar MO; Cholich V; Gramajo H; Arabolaza A Appl Microbiol Biotechnol; 2020 Oct; 104(20):8705-8718. PubMed ID: 32910267 [TBL] [Abstract][Full Text] [Related]
30. Disruption of the SucT acyltransferase in Palčeková Z; Angala SK; Belardinelli JM; Eskandarian HA; Joe M; Brunton R; Rithner C; Jones V; Nigou J; Lowary TL; Gilleron M; McNeil M; Jackson M J Biol Chem; 2019 Jun; 294(26):10325-10335. PubMed ID: 31110045 [TBL] [Abstract][Full Text] [Related]
32. N Jones BS; Pareek V; Hu DD; Weaver SD; Syska C; Galfano G; Champion MM; Champion PA bioRxiv; 2024 Jul; ():. PubMed ID: 39005365 [TBL] [Abstract][Full Text] [Related]
33. MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish. Yu J; Niu C; Wang D; Li M; Teo W; Sun G; Wang J; Liu J; Gao Q Microbes Infect; 2011 Jan; 13(1):33-41. PubMed ID: 20974274 [TBL] [Abstract][Full Text] [Related]
34. The Impact of Genome Region of Difference 4 (RD4) on Mycobacterial Virulence and BCG Efficacy. Ru H; Liu X; Lin C; Yang J; Chen F; Sun R; Zhang L; Liu J Front Cell Infect Microbiol; 2017; 7():239. PubMed ID: 28642843 [TBL] [Abstract][Full Text] [Related]
35. Acetylation of Surface Carbohydrates in Bacterial Pathogens Requires Coordinated Action of a Two-Domain Membrane-Bound Acyltransferase. Pearson CR; Tindall SN; Herman R; Jenkins HT; Bateman A; Thomas GH; Potts JR; Van der Woude MW mBio; 2020 Aug; 11(4):. PubMed ID: 32843546 [TBL] [Abstract][Full Text] [Related]
36. Control of cell wall assembly by a histone-like protein in Mycobacteria. Katsube T; Matsumoto S; Takatsuka M; Okuyama M; Ozeki Y; Naito M; Nishiuchi Y; Fujiwara N; Yoshimura M; Tsuboi T; Torii M; Oshitani N; Arakawa T; Kobayashi K J Bacteriol; 2007 Nov; 189(22):8241-9. PubMed ID: 17873049 [TBL] [Abstract][Full Text] [Related]
37. Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis. Chen X; Zhang B; Jiang X; Liu Z; Zheng Y World J Microbiol Biotechnol; 2024 Oct; 40(11):350. PubMed ID: 39404941 [TBL] [Abstract][Full Text] [Related]
38. Mutational analysis of cell wall biosynthesis in Mycobacterium avium. Laurent JP; Hauge K; Burnside K; Cangelosi G J Bacteriol; 2003 Aug; 185(16):5003-6. PubMed ID: 12897021 [TBL] [Abstract][Full Text] [Related]
39. Revisiting the expression signature of pks15/1 unveils regulatory patterns controlling phenolphtiocerol and phenolglycolipid production in pathogenic mycobacteria. Ramos B; Gordon SV; Cunha MV PLoS One; 2020; 15(5):e0229700. PubMed ID: 32379829 [TBL] [Abstract][Full Text] [Related]