These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22362024)

  • 1. The theory of velocity selective neural recording: a study based on simulation.
    Taylor J; Schuettler M; Clarke C; Donaldson N
    Med Biol Eng Comput; 2012 Mar; 50(3):309-18. PubMed ID: 22362024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple-electrode nerve cuffs for low-velocity and velocity-selective neural recording.
    Taylor J; Donaldson N; Winter J
    Med Biol Eng Comput; 2004 Sep; 42(5):634-43. PubMed ID: 15503964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise and selectivity of velocity-selective multi-electrode nerve cuffs.
    Donaldson N; Rieger R; Schuettler M; Taylor J
    Med Biol Eng Comput; 2008 Oct; 46(10):1005-18. PubMed ID: 18696136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity Selective Neural Signal Recording Using a Space-Time Electrode Array.
    Karimi F; Seydnejad SR
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):837-48. PubMed ID: 25532069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for spike extraction using velocity selective recording demonstrated with physiological ENG in Rat.
    Metcalfe BW; Chew DJ; Clarke CT; Donaldson Nde N; Taylor JT
    J Neurosci Methods; 2015 Aug; 251():47-55. PubMed ID: 25983203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals.
    Farina D; Merletti R
    IEEE Trans Biomed Eng; 2003 Dec; 50(12):1340-51. PubMed ID: 14656063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A summary of the theory of velocity selective neural recording.
    Taylor J; Schuettler M; Clarke C; Donaldson N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4649-52. PubMed ID: 22255374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff.
    Schuettler M; Donaldson N; Seetohul V; Taylor J
    J Neural Eng; 2013 Jun; 10(3):036016. PubMed ID: 23640008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of motor unit conduction velocity from surface EMG recordings by signal-based selection of the spatial filters.
    Mesin L; Tizzani F; Farina D
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1963-71. PubMed ID: 17019860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation analysis of the ability to estimate motor unit propagation velocity non-invasively by different two-channel methods and types of multi-electrodes.
    Arabadzhiev TI; Dimitrov GV; Dimitrova NA
    J Electromyogr Kinesiol; 2003 Oct; 13(5):403-15. PubMed ID: 12932414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to improve the estimation of conduction velocity distributions over a short segment of nerve.
    Wells MD; Gozani SN
    IEEE Trans Biomed Eng; 1999 Sep; 46(9):1107-20. PubMed ID: 10493074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.
    Rieger R; Taylor J; Comi E; Donaldson N; Russold M; Mahony CM; McLaughlin JA; McAdams E; Demosthenous A; Jarvis JC
    Med Eng Phys; 2004 Jul; 26(6):531-4. PubMed ID: 15234689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Signal Processing Methods for Velocity Selective Neural Recording Using Multi-Electrode Cuffs.
    Al-Shueli AI; Clarke CT; Donaldson N; Taylor J
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):401-10. PubMed ID: 24107978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The single nerve fiber action potential and the filter bank--a modeling approach.
    Struijk LN; Akay M; Struijk JJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):372-5. PubMed ID: 18232387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of optimal multichannel filtering to simulated nerve signals.
    Andreassen S; Stein RB; Oğuztöreli MN
    Biol Cybern; 1979 Feb; 32(1):25-33. PubMed ID: 216424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cell-electrode interface noise model for high-density microelectrode arrays.
    Joye N; Schmid A; Leblebici Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3247-50. PubMed ID: 19964290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal strength versus cuff length in nerve cuff electrode recordings.
    Andreasen LN; Struijk JJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1045-50. PubMed ID: 12214877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for characterization of peripheral nerve fiber size distributions by group delay.
    Szlavik RB
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2836-40. PubMed ID: 19126466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.