BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 22362271)

  • 1. Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells.
    Ohara Y; Oda T; Yamada K; Hashimoto S; Akashi Y; Miyamoto R; Kobayashi A; Fukunaga K; Sasaki R; Ohkohchi N
    Int J Cancer; 2012 Nov; 131(10):2402-10. PubMed ID: 22362271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice.
    Gupta B; Torchilin VP
    Cancer Immunol Immunother; 2007 Aug; 56(8):1215-23. PubMed ID: 17219149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs.
    Qiao L; Hu S; Huang K; Su T; Li Z; Vandergriff A; Cores J; Dinh PU; Allen T; Shen D; Liang H; Li Y; Cheng K
    Theranostics; 2020; 10(8):3474-3487. PubMed ID: 32206102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Thioaptamer with Homing Specificity to Lymphoma Bone Marrow Involvement.
    Mai J; Li X; Zhang G; Huang Y; Xu R; Shen Q; Lokesh GL; Thiviyanathan V; Chen L; Liu H; Zu Y; Ma X; Volk DE; Gorenstein DG; Ferrari M; Shen H
    Mol Pharm; 2018 May; 15(5):1814-1825. PubMed ID: 29537266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and PET/CT imaging of implant directed
    Polyak A; Harting H; Angrisani N; Herrmann T; Ehlert N; Meißner J; Willmann M; Al-Bazaz S; Ross TL; Bankstahl JP; Reifenrath J
    J Nanobiotechnology; 2023 Aug; 21(1):270. PubMed ID: 37592318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing off-target drug accumulation by exploiting a type-III interferon response.
    Tilden SG; Ricco MH; Hemann EA; Anchordoquy TJ
    J Control Release; 2023 Jun; 358():729-738. PubMed ID: 37230293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect.
    Ejigah V; Owoseni O; Bataille-Backer P; Ogundipe OD; Fisusi FA; Adesina SK
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage depletion increases target specificity of bone-targeted nanoparticles.
    Ackun-Farmmer MA; Xiao B; Newman MR; Benoit DSW
    J Biomed Mater Res A; 2022 Jan; 110(1):229-238. PubMed ID: 34319645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innate and adaptive immune responses toward nanomedicines.
    Viana IMO; Roussel S; Defrêne J; Lima EM; Barabé F; Bertrand N
    Acta Pharm Sin B; 2021 Apr; 11(4):852-870. PubMed ID: 33747756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine.
    Belhadj Z; He B; Deng H; Song S; Zhang H; Wang X; Dai W; Zhang Q
    J Extracell Vesicles; 2020 Aug; 9(1):1806444. PubMed ID: 32944191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ImmunoPET Imaging of Pancreatic Tumors with
    Sobol NB; Korsen JA; Younes A; Edwards KJ; Lewis JS
    Mol Imaging Biol; 2021 Feb; 23(1):84-94. PubMed ID: 32909244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology-Based Targeting of mTOR Signaling in Cancer.
    Yoon MS
    Int J Nanomedicine; 2020; 15():5767-5781. PubMed ID: 32821100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood exosomes regulate the tissue distribution of grapefruit-derived nanovector via CD36 and IGFR1 pathways.
    Wang QL; Zhuang X; Sriwastva MK; Mu J; Teng Y; Deng Z; Zhang L; Sundaram K; Kumar A; Miller D; Yan J; Zhang HG
    Theranostics; 2018; 8(18):4912-4924. PubMed ID: 30429877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples.
    Zhang RX; Li J; Zhang T; Amini MA; He C; Lu B; Ahmed T; Lip H; Rauth AM; Wu XY
    Acta Pharmacol Sin; 2018 May; 39(5):825-844. PubMed ID: 29698389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of removing Kupffer cells on nanoparticle tumor delivery.
    Tavares AJ; Poon W; Zhang YN; Dai Q; Besla R; Ding D; Ouyang B; Li A; Chen J; Zheng G; Robbins C; Chan WCW
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10871-E10880. PubMed ID: 29208719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in tumor-associated macrophage (TAM)-targeted therapeutics.
    Ngambenjawong C; Gustafson HH; Pun SH
    Adv Drug Deliv Rev; 2017 May; 114():206-221. PubMed ID: 28449873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for improving drug delivery: nanocarriers and microenvironmental priming.
    Khalid A; Persano S; Shen H; Zhao Y; Blanco E; Ferrari M; Wolfram J
    Expert Opin Drug Deliv; 2017 Jul; 14(7):865-877. PubMed ID: 27690153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells.
    Kullberg M; Martinson H; Mann K; Anchordoquy TJ
    Nanomedicine; 2015 Aug; 11(6):1355-63. PubMed ID: 25839391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folic acid conjugated δ-valerolactone-poly(ethylene glycol) based triblock copolymer as a promising carrier for targeted doxorubicin delivery.
    Nair K L; Jagadeeshan S; Nair S A; Kumar GS
    PLoS One; 2013; 8(8):e70697. PubMed ID: 23990912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nanoparticles binding β-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages.
    Orlando A; Re F; Sesana S; Rivolta I; Panariti A; Brambilla D; Nicolas J; Couvreur P; Andrieux K; Masserini M; Cazzaniga E
    Int J Nanomedicine; 2013; 8():1335-47. PubMed ID: 23717039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.