These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22362408)
1. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Asín L; Ibarra MR; Tres A; Goya GF Pharm Res; 2012 May; 29(5):1319-27. PubMed ID: 22362408 [TBL] [Abstract][Full Text] [Related]
2. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Marcos-Campos I; Asín L; Torres TE; Marquina C; Tres A; Ibarra MR; Goya GF Nanotechnology; 2011 May; 22(20):205101. PubMed ID: 21444956 [TBL] [Abstract][Full Text] [Related]
3. Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Asín L; Goya GF; Tres A; Ibarra MR Cell Death Dis; 2013 Apr; 4(4):e596. PubMed ID: 23598408 [TBL] [Abstract][Full Text] [Related]
4. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. Khandhar AP; Ferguson RM; Simon JA; Krishnan KM J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652 [TBL] [Abstract][Full Text] [Related]
5. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis. Piao D; Towner RA; Smith N; Chen WR Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611 [TBL] [Abstract][Full Text] [Related]
6. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
7. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells. Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525 [TBL] [Abstract][Full Text] [Related]
8. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108 [TBL] [Abstract][Full Text] [Related]
9. The heating efficiency of magnetic nanoparticles under an alternating magnetic field. Yu X; Yang R; Wu C; Liu B; Zhang W Sci Rep; 2022 Sep; 12(1):16055. PubMed ID: 36163493 [TBL] [Abstract][Full Text] [Related]
10. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells. Cheng D; Li X; Zhang G; Shi H Nanoscale Res Lett; 2014; 9(1):195. PubMed ID: 24872797 [TBL] [Abstract][Full Text] [Related]
11. Hyperbranched Polymer-Functionalized Magnetic Nanoparticle-Mediated Hyperthermia and Niclosamide Bimodal Therapy of Colorectal Cancer Cells. Ahmad A; Gupta A; Ansari MM; Vyawahare A; Jayamurugan G; Khan R ACS Biomater Sci Eng; 2020 Feb; 6(2):1102-1111. PubMed ID: 33464864 [TBL] [Abstract][Full Text] [Related]
12. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line. Liu JY; Zhao LY; Wang YY; Li DY; Tao D; Li LY; Tang JT Oncol Rep; 2012 Mar; 27(3):791-7. PubMed ID: 22200741 [TBL] [Abstract][Full Text] [Related]
13. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy. Zhao L; Yang B; Dai X; Wang X; Gao F; Zhang X; Tang J J Nanosci Nanotechnol; 2010 Nov; 10(11):7117-20. PubMed ID: 21137877 [TBL] [Abstract][Full Text] [Related]
14. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
15. Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections. Grazú V; Silber AM; Moros M; Asín L; Torres TE; Marquina C; Ibarra MR; Goya GF Int J Nanomedicine; 2012; 7():5351-60. PubMed ID: 23071396 [TBL] [Abstract][Full Text] [Related]
16. Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells. Calatayud MP; Soler E; Torres TE; Campos-Gonzalez E; Junquera C; Ibarra MR; Goya GF Sci Rep; 2017 Aug; 7(1):8627. PubMed ID: 28819156 [TBL] [Abstract][Full Text] [Related]
17. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation. Ovejero JG; Armenia I; Serantes D; Veintemillas-Verdaguer S; Zeballos N; López-Gallego F; Grüttner C; de la Fuente JM; Puerto Morales MD; Grazu V Nano Lett; 2021 Sep; 21(17):7213-7220. PubMed ID: 34410726 [TBL] [Abstract][Full Text] [Related]
18. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease. Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509 [TBL] [Abstract][Full Text] [Related]
19. Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines. Souiade L; Domingo-Diez J; Alcaide C; Gámez B; Gámez L; Ramos M; Serrano Olmedo JJ Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958913 [TBL] [Abstract][Full Text] [Related]