These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 2236256)

  • 1. Brain structures important for solving a sawdust-digging problem in the rat.
    Thompson R; Huestis PW; Shea CN; Crinella FM; Yu Y
    Physiol Behav; 1990 Jul; 48(1):107-11. PubMed ID: 2236256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain mechanisms underlying motor skill learning in the rat.
    Thompson R; Huestis PW; Crinella FM; Yu J
    Am J Phys Med Rehabil; 1990 Aug; 69(4):191-7. PubMed ID: 2383379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure to transfer a digging response to a detour problem in young rats with lesions to the "general learning system".
    Thompson R; Bjelajac VM; Fukui S; Huestis PW; Crinella FM; Yu J
    Physiol Behav; 1989 Jun; 45(6):1235-41. PubMed ID: 2813548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of unilateral anteromedial cortex lesions on prey-catching and spatio-motor behaviour in the rat.
    Christie D; Terry P; Oakley DA
    Behav Brain Res; 1990 Mar; 37(3):263-8. PubMed ID: 2340100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditioned rotation: a behavioral analysis.
    Richards JB; Sabol KE; Freed CR
    Physiol Behav; 1990 Jun; 47(6):1083-7. PubMed ID: 2395913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting effects of motor and visual spatial learning tasks on dendritic arborization and spine density in rats.
    Kolb B; Cioe J; Comeau W
    Neurobiol Learn Mem; 2008 Sep; 90(2):295-300. PubMed ID: 18547826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reaching reaction in the rat: a part of the digging pattern?
    Brácha V; Zhuravin IA; Bures J
    Behav Brain Res; 1990 Jan; 36(1-2):53-64. PubMed ID: 2302321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of changing reward on performance of the delayed spatial win-shift radial maze task in pedunculopontine tegmental nucleus lesioned rats.
    Taylor CL; Kozak R; Latimer MP; Winn P
    Behav Brain Res; 2004 Aug; 153(2):431-8. PubMed ID: 15265639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesions in nucleus basalis magnocellularis and medial septal area of rats produce similar memory impairments in appetitive and non-appetitive behavioral tasks.
    Hepler D; Wenk G; Olton D; Coyle J
    Ann N Y Acad Sci; 1985; 444():518-9. PubMed ID: 3860114
    [No Abstract]   [Full Text] [Related]  

  • 11. Some new experimental approaches to the analysis of complex forms of behavior.
    Mukhin EI
    Neurosci Behav Physiol; 1983; 13(5):357-62. PubMed ID: 6672648
    [No Abstract]   [Full Text] [Related]  

  • 12. Visuospatial discrimination deficit in rats after ibotenate lesions in anteromedial visual cortex.
    Sánchez RF; Montero VM; Espinoza SG; Díaz E; Canitrot M; Pinto-Hamuy T
    Physiol Behav; 1997 Nov; 62(5):989-94. PubMed ID: 9333191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual attention task performance in Wistar and Lister hooded rats: response inhibition deficits after medial prefrontal cortex lesions.
    Broersen LM; Uylings HB
    Neuroscience; 1999; 94(1):47-57. PubMed ID: 10613496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional set-shifting in mice: modification of a rat paradigm, and evidence for strain-dependent variation.
    Colacicco G; Welzl H; Lipp HP; Würbel H
    Behav Brain Res; 2002 Apr; 132(1):95-102. PubMed ID: 11853862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning.
    Chersi F; Mirolli M; Pezzulo G; Baldassarre G
    Neural Netw; 2013 May; 41():212-24. PubMed ID: 23266482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anodal polarization in the substantia nigra increases rotational behavior in the rat.
    Hayashi Y; Hattori Y; Moriwaki A; Hori Y
    Physiol Behav; 1990 Jul; 48(1):195-8. PubMed ID: 2236271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous patterns of response learning and transfer in decorticate rats.
    Terry P; Herbert BA; Oakley DA
    Behav Brain Res; 1989 May; 33(1):105-9. PubMed ID: 2736057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor deactivation in the human cortex and basal ganglia.
    Marchand WR; Lee JN; Thatcher JW; Thatcher GW; Jensen C; Starr J
    Neuroimage; 2007 Nov; 38(3):538-48. PubMed ID: 17888686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural correlates of mental preparation for successful insight problem solving.
    Tian F; Tu S; Qiu J; Lv JY; Wei DT; Su YH; Zhang QL
    Behav Brain Res; 2011 Jan; 216(2):626-30. PubMed ID: 20837067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.