These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22362666)

  • 1. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography.
    Tracy SR; Black CR; Roberts JA; Sturrock C; Mairhofer S; Craigon J; Mooney SJ
    Ann Bot; 2012 Jul; 110(2):511-9. PubMed ID: 22362666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of plant species and soil condition in the structural development of the rhizosphere.
    Helliwell JR; Sturrock CJ; Miller AJ; Whalley WR; Mooney SJ
    Plant Cell Environ; 2019 Jun; 42(6):1974-1986. PubMed ID: 30719731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography.
    Burr-Hersey JE; Mooney SJ; Bengough AG; Mairhofer S; Ritz K
    PLoS One; 2017; 12(7):e0181872. PubMed ID: 28753645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant root tortuosity: an indicator of root path formation in soil with different composition and density.
    Popova L; van Dusschoten D; Nagel KA; Fiorani F; Mazzolai B
    Ann Bot; 2016 Oct; 118(4):685-698. PubMed ID: 27192709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength.
    Colombi T; Kirchgessner N; Walter A; Keller T
    Plant Physiol; 2017 Aug; 174(4):2289-2301. PubMed ID: 28600344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reorganisation of rhizosphere soil pore structure by wild plant species in compacted soils.
    Burr-Hersey JE; Ritz K; Bengough GA; Mooney SJ
    J Exp Bot; 2020 Oct; 71(19):6107-6115. PubMed ID: 32668003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root anatomical traits contribute to deeper rooting of maize under compacted field conditions.
    Vanhees DJ; Loades KW; Bengough AG; Mooney SJ; Lynch JP
    J Exp Bot; 2020 Jul; 71(14):4243-4257. PubMed ID: 32420593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light modulates the root tip excision induced lateral root formation in tomato.
    Thomas S; Sreelakshmi Y; Sharma R
    Plant Signal Behav; 2014; 9(10):e970098. PubMed ID: 25482798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil strength influences wheat root interactions with soil macropores.
    Atkinson JA; Hawkesford MJ; Whalley WR; Zhou H; Mooney SJ
    Plant Cell Environ; 2020 Jan; 43(1):235-245. PubMed ID: 31600410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do agricultural grasses bred for improved root systems provide resilience to machinery-derived soil compaction?
    Muhandiram NPK; Humphreys MW; Fychan R; Davies JW; Sanderson R; Marley CL
    Food Energy Secur; 2020 Aug; 9(3):e227. PubMed ID: 32999718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Diversity under Soil Compaction in Wheat: Root Number as a Promising Trait for Early Plant Vigor.
    Colombi T; Walter A
    Front Plant Sci; 2017; 8():420. PubMed ID: 28400783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting chickpea genomic loci associated with the root penetration responsive traits in compacted soil.
    Donde R; Kohli PS; Pandey M; Sirohi U; Singh B; Giri J
    Planta; 2023 Dec; 259(1):17. PubMed ID: 38078944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strigolactones Control Root System Architecture and Tip Anatomy in
    Santoro V; Schiavon M; Gresta F; Ertani A; Cardinale F; Sturrock CJ; Celi L; Schubert A
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32403352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering root compaction response mechanisms: new insights and opportunities.
    Pandey BK; Bennett MJ
    J Exp Bot; 2024 Jan; 75(2):578-583. PubMed ID: 37950742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchrotron tomography of magnetoprimed soybean plant root system architecture grown in arsenic-polluted soil.
    Fatima A; Kataria S; Jain M; Prajapati R; Mahawar L
    Front Plant Sci; 2024; 15():1391846. PubMed ID: 39015294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of root cap mucilage and presence of an intact root cap in maize (Zea mays) to the reduction of soil mechanical impedance.
    Iijima M; Higuchi T; Barlow PW
    Ann Bot; 2004 Sep; 94(3):473-7. PubMed ID: 15277251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).
    Hecht VL; Temperton VM; Nagel KA; Rascher U; Postma JA
    Front Plant Sci; 2016; 7():944. PubMed ID: 27446171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil compaction and the architectural plasticity of root systems.
    Correa J; Postma JA; Watt M; Wojciechowski T
    J Exp Bot; 2019 Nov; 70(21):6019-6034. PubMed ID: 31504740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant exudates improve the mechanical conditions for root penetration through compacted soils.
    Oleghe E; Naveed M; Baggs EM; Hallett PD
    Plant Soil; 2017; 421(1):19-30. PubMed ID: 31997836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the impact of root morphology on overturning mechanisms: a modelling approach.
    Fourcaud T; Ji JN; Zhang ZQ; Stokes A
    Ann Bot; 2008 May; 101(8):1267-80. PubMed ID: 17942593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.