These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 22362744)
1. MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Ye H; Liu X; Lv M; Wu Y; Kuang S; Gong J; Yuan P; Zhong Z; Li Q; Jia H; Sun J; Chen Z; Guo AY Nucleic Acids Res; 2012 Jul; 40(12):5201-14. PubMed ID: 22362744 [TBL] [Abstract][Full Text] [Related]
2. MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-κB signaling. Xia JT; Chen LZ; Jian WH; Wang KB; Yang YZ; He WL; He YL; Chen D; Li W J Transl Med; 2014 Feb; 12():33. PubMed ID: 24495516 [TBL] [Abstract][Full Text] [Related]
3. miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Zhu M; Zhou X; Du Y; Huang Z; Zhu J; Xu J; Cheng G; Shu Y; Liu P; Zhu W; Wang T Mol Med Rep; 2016 Aug; 14(2):1742-50. PubMed ID: 27357419 [TBL] [Abstract][Full Text] [Related]
4. miR-130b regulates B cell proliferation via CYLD-mediated NF-κB signaling. Wu M; Zhao J; Wu W; Hao C; Yang Y; Zhang J Exp Cell Res; 2024 Jan; 434(1):113870. PubMed ID: 38049082 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-370-3p shuttled by breast cancer cell-derived extracellular vesicles induces fibroblast activation through the CYLD/Nf-κB axis to promote breast cancer progression. Ren Z; Lv M; Yu Q; Bao J; Lou K; Li X FASEB J; 2021 Mar; 35(3):e21383. PubMed ID: 33629796 [TBL] [Abstract][Full Text] [Related]
6. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Iliopoulos D; Jaeger SA; Hirsch HA; Bulyk ML; Struhl K Mol Cell; 2010 Aug; 39(4):493-506. PubMed ID: 20797623 [TBL] [Abstract][Full Text] [Related]
7. Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer. Wang H; Luo J; Liu C; Niu H; Wang J; Liu Q; Zhao Z; Xu H; Ding Y; Sun J; Zhang Q BMC Bioinformatics; 2017 Sep; 18(1):388. PubMed ID: 28865443 [TBL] [Abstract][Full Text] [Related]
8. Neuroprotective effects of isosteviol sodium through increasing CYLD by the downregulation of miRNA-181b. Zhang H; Zhong K; Lu M; Mei Y; Tan E; Sun X; Tan W Brain Res Bull; 2018 Jun; 140():392-401. PubMed ID: 29807144 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the MIR155 host gene in physiological and pathological processes. Elton TS; Selemon H; Elton SM; Parinandi NL Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696 [TBL] [Abstract][Full Text] [Related]
11. DNA methylation-mediated silencing of microRNA-204 enhances T cell acute lymphoblastic leukemia by up-regulating MMP-2 and MMP-9 via NF-κB. Lin C; Chen D; Xiao T; Lin D; Lin D; Lin L; Zhu H; Xu J; Huang W; Yang T J Cell Mol Med; 2021 Mar; 25(5):2365-2376. PubMed ID: 33566449 [TBL] [Abstract][Full Text] [Related]
12. TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. Song L; Liu L; Wu Z; Li Y; Ying Z; Lin C; Wu J; Hu B; Cheng SY; Li M; Li J J Clin Invest; 2012 Oct; 122(10):3563-78. PubMed ID: 23006329 [TBL] [Abstract][Full Text] [Related]
13. Regulatory network analysis reveals the oncogenesis roles of feed-forward loops and therapeutic target in T-cell acute lymphoblastic leukemia. Xia M; Zhang Q; Luo M; Li P; Wang Y; Lei Q; Guo AY BMC Med Genomics; 2019 Jan; 12(1):8. PubMed ID: 30646895 [TBL] [Abstract][Full Text] [Related]
14. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Mavrakis KJ; Van Der Meulen J; Wolfe AL; Liu X; Mets E; Taghon T; Khan AA; Setty M; Rondou P; Vandenberghe P; Delabesse E; Benoit Y; Socci NB; Leslie CS; Van Vlierberghe P; Speleman F; Wendel HG Nat Genet; 2011 Jun; 43(7):673-8. PubMed ID: 21642990 [TBL] [Abstract][Full Text] [Related]
15. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia. Lin XC; Liu XG; Zhang YM; Li N; Yang ZG; Fu WY; Lan LB; Zhang HT; Dai Y Int J Oncol; 2017 Feb; 50(2):671-683. PubMed ID: 28101583 [TBL] [Abstract][Full Text] [Related]
16. Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma. Sun J; Gong X; Purow B; Zhao Z PLoS Comput Biol; 2012; 8(7):e1002488. PubMed ID: 22829753 [TBL] [Abstract][Full Text] [Related]
17. miR-182 controls cell growth in gastrointestinal stromal tumors by negatively regulating CYLD expression. Ling T; Yu F; Cao H Oncol Rep; 2018 Dec; 40(6):3705-3713. PubMed ID: 30542706 [TBL] [Abstract][Full Text] [Related]
18. hsa-miR-20b-5p and hsa-miR-363-3p Affect Expression of Drobna M; Szarzyńska B; Jaksik R; Sędek Ł; Kuchmiy A; Taghon T; Van Vlierberghe P; Szczepański T; Witt M; Dawidowska M Cells; 2020 May; 9(5):. PubMed ID: 32380791 [TBL] [Abstract][Full Text] [Related]
19. miR-130b, an onco-miRNA in bladder cancer, is directly regulated by NF-κB and sustains NF-κB activation by decreasing Cylindromatosis expression. Cui X; Kong C; Zhu Y; Zeng Y; Zhang Z; Liu X; Zhan B; Piao C; Jiang Z Oncotarget; 2016 Jul; 7(30):48547-48561. PubMed ID: 27391066 [TBL] [Abstract][Full Text] [Related]
20. Subquinocin, a small molecule inhibitor of CYLD and USP-family deubiquitinating enzymes, promotes NF-κB signaling. Yamanaka S; Sato Y; Oikawa D; Goto E; Fukai S; Tokunaga F; Takahashi H; Sawasaki T Biochem Biophys Res Commun; 2020 Mar; 524(1):1-7. PubMed ID: 31898971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]