These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 223628)

  • 1. Localization of the primary quinone binding site in reaction centers from Rhodopseudomonas sphaeroides R-26 by photoaffinity labeling.
    Marinetti TD; Okamura MY; Feher G
    Biochemistry; 1979 Jul; 18(14):3126-33. PubMed ID: 223628
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of an electron acceptor in reaction centers of Rhodopseudomonas spheroides by EPR spectroscopy.
    Feher G; Okamura MY; McElroy JD
    Biochim Biophys Acta; 1972 Apr; 267(1):222-6. PubMed ID: 4336313
    [No Abstract]   [Full Text] [Related]  

  • 3. Herbicide-quinone competition in the acceptor complex of photosynthetic reaction centers from Rhodopseudomonas sphaeroides: a bacterial model for PS-II-herbicide activity in plants.
    Stein RR; Castellvi AL; Bogacz JP; Wraight CA
    J Cell Biochem; 1984; 24(3):243-59. PubMed ID: 6376526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoaffinity labeling of an antimycin-binding site in Rhodopseudomonas sphaeroides.
    Wilson E; Farley TM; Takemoto JY
    J Biol Chem; 1985 Aug; 260(18):10288-92. PubMed ID: 2991282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of cytochrome c with reaction centers of Rhodopseudomonas sphaeroides R-26: localization of the binding site by chemical cross-linking and immunochemical studies.
    Rosen D; Okamura MY; Abresch EC; Valkirs GE; Feher G
    Biochemistry; 1983 Jan; 22(2):335-41. PubMed ID: 6297545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the influence of headgroup substitution and isoprene side-chain length in the function of primary and secondary quinones of bacterial reaction centers.
    McComb JC; Stein RR; Wraight CA
    Biochim Biophys Acta; 1990 Jan; 1015(1):156-71. PubMed ID: 2404516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: characterization of Q(B)- states by high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR).
    Utschig LM; Thurnauer MC; Tiede DM; Poluektov OG
    Biochemistry; 2005 Nov; 44(43):14131-42. PubMed ID: 16245929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the reaction center from Rhodobacter sphaeroides R-26: protein-cofactor (quinones and Fe2+) interactions.
    Allen JP; Feher G; Yeates TO; Komiya H; Rees DC
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8487-91. PubMed ID: 3054889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquinone reduction in the photosynthetic reaction centre of Rhodobacter sphaeroides: interplay between electron transfer, proton binding and flips of the quinone ring.
    Mulkidjanian AY; Kozlova MA; Cherepanov DA
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):845-50. PubMed ID: 16042612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron nuclear double resonance of semiquinones in reaction centers of Rhodopseudomonas sphaeroides.
    Lubitz W; Abresch EC; Debus RJ; Isaacson RA; Okamura MY; Feher G
    Biochim Biophys Acta; 1985 Aug; 808(3):464-9. PubMed ID: 2990555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of deuteration on the kinetics of photoinduced electron transport in the reaction centers of purple bacteria].
    Noks PP; Kononenko AA; Rubin AB
    Biofizika; 1980; 25(2):239-41. PubMed ID: 6966162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of wild type and genetically modified reaction centers from Rhodobacter capsulatus: structural comparison with Rhodopseudomonas viridis and Rhodobacter sphaeroides.
    Baciou L; Bylina EJ; Sebban P
    Biophys J; 1993 Aug; 65(2):652-60. PubMed ID: 8218894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of a bicarbonate-depletion effect in electron transfer between quinones in chromatophores and reaction centers of Rhodobacter sphaeroides.
    Shopes RJ; Blubaugh DJ; Wraight CA; Govindjee
    Biochim Biophys Acta; 1989 Apr; 974(1):114-8. PubMed ID: 2647143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: the symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26.
    Norris JR; Budil DE; Gast P; Chang CH; el-Kabbani O; Schiffer M
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4335-9. PubMed ID: 2543969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of Fe2+ in bacterial photosynthesis. The effect of biosynthetic substitution of Fe2+ by Mn2+ on the electron transfer step Q-1Q2----Q1Q-2 in reaction centers.
    Nam HK; Austin RH; Dismukes GC
    Biochim Biophys Acta; 1984 Jun; 765(3):301-8. PubMed ID: 6329272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Hsi ES; Bolton JR
    Biochim Biophys Acta; 1974 Apr; 347(1):126-33. PubMed ID: 4373063
    [No Abstract]   [Full Text] [Related]  

  • 17. Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA-.
    Calvo R; Passeggi MC; Isaacson RA; Okamura MY; Feher G
    Biophys J; 1990 Jul; 58(1):149-65. PubMed ID: 2166597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A network of hydrogen bonds in the reaction centers of Rhodobacter sphaeroides serves as a regulatory factor of the temperature dependence of the recombination rate constant of photooxidized bacteriochlorophyll and primary quinone acceptors].
    Krasil'nikov PM; Bashtovyĭ D; Knox PP; Pashchenko VZ
    Biofizika; 2004; 49(5):822-8. PubMed ID: 15526466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of cytochrome and quinone turnovers in the photocycle of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides.
    Osváth S; Maróti P
    Biophys J; 1997 Aug; 73(2):972-82. PubMed ID: 9251814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.