BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22362842)

  • 1. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes.
    Konno H; Nakane T; Yoshida M; Ueoka-Nakanishi H; Hara S; Hisabori T
    Plant Cell Physiol; 2012 Apr; 53(4):626-34. PubMed ID: 22362842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase.
    Konno H; Suzuki T; Bald D; Yoshida M; Hisabori T
    Biochem Biophys Res Commun; 2004 May; 318(1):17-24. PubMed ID: 15110747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory role of the C-terminus of the epsilon subunit from the chloroplast ATP synthase.
    Nowak KF; McCarty RE
    Biochemistry; 2004 Mar; 43(11):3273-9. PubMed ID: 15023078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-terminal deletion of the gamma subunit affects the stabilization and activity of chloroplast ATP synthase.
    Ni ZL; Dong H; Wei JM
    FEBS J; 2005 Mar; 272(6):1379-85. PubMed ID: 15752355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced proton slip and proton leak at the thylakoid membrane.
    Richter M; Daufenbach J; Drebing S; Vucetic V; Nguyen DT
    J Plant Physiol; 2004 Dec; 161(12):1325-37. PubMed ID: 15658803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop.
    Buchert F; Konno H; Hisabori T
    Biochim Biophys Acta; 2015; 1847(4-5):441-450. PubMed ID: 25660164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin target proteins in chloroplast thylakoid membranes.
    Balmer Y; Vensel WH; Hurkman WJ; Buchanan BB
    Antioxid Redox Signal; 2006; 8(9-10):1829-34. PubMed ID: 16987035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A point mutation in atpC1 raises the redox potential of the Arabidopsis chloroplast ATP synthase gamma-subunit regulatory disulfide above the range of thioredoxin modulation.
    Wu G; Ortiz-Flores G; Ortiz-Lopez A; Ort DR
    J Biol Chem; 2007 Dec; 282(51):36782-9. PubMed ID: 17959606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse regulation of F1-ATPase activity by a mutation at the regulatory region on the gamma subunit of chloroplast ATP synthase.
    Konno H; Yodogawa M; Stumpp MT; Kroth P; Strotmann H; Motohashi K; Amano T; Hisabori T
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):783-8. PubMed ID: 11104686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo.
    Buchert F; Forreiter C
    FEBS Lett; 2010 Jan; 584(1):147-52. PubMed ID: 19925794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chloroplast ATP synthase features the characteristic redox regulation machinery.
    Hisabori T; Sunamura E; Kim Y; Konno H
    Antioxid Redox Signal; 2013 Nov; 19(15):1846-54. PubMed ID: 23145525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-Terminal mutations in the chloroplast ATP synthase gamma subunit impair ATP synthesis and stimulate ATP hydrolysis.
    He F; Samra HS; Johnson EA; Degner NR; McCarty RE; Richter ML
    Biochemistry; 2008 Jan; 47(2):836-44. PubMed ID: 18092810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation of the proton electrochemical gradient in chloroplasts promotes the oxidation of ATP synthase by thioredoxin-like proteins.
    Sekiguchi T; Yoshida K; Wakabayashi KI; Hisabori T
    J Biol Chem; 2022 Nov; 298(11):102541. PubMed ID: 36174673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit.
    McCallum JR; McCarty RE
    Biochim Biophys Acta; 2007 Jul; 1767(7):974-9. PubMed ID: 17559799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.
    Kohzuma K; Dal Bosco C; Meurer J; Kramer DM
    J Biol Chem; 2013 May; 288(18):13156-63. PubMed ID: 23486473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of redox modulation on chloroplast ATP synthase.
    Yang JH; Williams D; Kandiah E; Fromme P; Chiu PL
    Commun Biol; 2020 Sep; 3(1):482. PubMed ID: 32879423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance.
    Carrillo LR; Froehlich JE; Cruz JA; Savage LJ; Kramer DM
    Plant J; 2016 Sep; 87(6):654-63. PubMed ID: 27233821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The decay of the ATPase activity of light plus thiol-activated thylakoid membranes in the dark.
    McCarty RE
    J Bioenerg Biomembr; 2006 Feb; 38(1):67-74. PubMed ID: 16775764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP synthase of chloroplast thylakoid membranes: a more in depth characterization of its ATPase activity.
    McCarty RE
    J Bioenerg Biomembr; 2005 Oct; 37(5):289-97. PubMed ID: 16341773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitutions of the conserved Gly47 affect the CF1 inhibitor and proton gate functions of the chloroplast ATP synthase epsilon subunit.
    Dong H; Ni ZL; Wei JM
    Acta Biochim Biophys Sin (Shanghai); 2005 Jul; 37(7):453-62. PubMed ID: 15999206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.