These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 223636)

  • 1. Regulation of cyclic photophosphorylation in Rhodospirillum rubrum by the redox state of nicotinamide-adenine dinucleotide.
    Gimenez-Gallego G; Ramirez-Ponce MP; Ramirez JM
    Biochim Biophys Acta; 1979 Aug; 547(2):211-7. PubMed ID: 223636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of nicotinamide adenine dinucleotide by pyruvate:lipoate oxidoreductase in anaerobic, dark-grown Rhodospirillum rubrum mutant C.
    Gorrell TE; Uffen RL
    J Bacteriol; 1978 Jun; 134(3):830-6. PubMed ID: 207677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores.
    Silberstein BR; Epel BL; Malkin S; Gromet-Elhanan Z
    Eur J Biochem; 1977 Oct; 80(1):135-41. PubMed ID: 411652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible physiological function of the oxygen-photoreducing system of Rhodospirillum rubrum.
    Giménez-Gallego G; del Valle-Tascón S; Ramírez JM
    Arch Microbiol; 1976 Aug; 109(1-2):119-25. PubMed ID: 822793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photooxidase system of Rhodospirillum rubrum. I. Photooxidations catalyzed by chromatophores isolated from a mutant deficient in photooxidase activity.
    Del Valle-Tascon S; Gimenez-Gallego G; Ramirez JM
    Biochim Biophys Acta; 1977 Jan; 459(1):76-87. PubMed ID: 64259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The photoreduction of nicotinamide-adenine dinucleotide by chromatophore fractions from Rhodospirillum rubrum.
    Govindjee R; Sybesma C
    Biophys J; 1972 Jul; 12(7):897-908. PubMed ID: 4338746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cyclic electron transfer and membrane potential generation in chromatophores on non-sulfur bacteria Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Biokhimiia; 1980 Jul; 45(7):1298-304. PubMed ID: 6783130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z
    J Biol Chem; 1974 Apr; 249(8):2522-7. PubMed ID: 4362685
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of transfer from low to high light intensity on electron transport in Rhodospirillum rubrum membranes.
    Irschik H; Oelze J
    Arch Microbiol; 1976 Sep; 109(3):307-13. PubMed ID: 185976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the significance of electron transport systems for growth of Rhodospirillum rubrum.
    Oelze J; Fakoussa RM; Hudewentz J
    Arch Microbiol; 1978 Jul; 118(1):127-32. PubMed ID: 211972
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of NAD+ as a signal during nitrogenase switch-off in Rhodospirillum rubrum.
    Norén A; Soliman A; Nordlund S
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):829-32. PubMed ID: 9148756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-linked reactions in photosynthetic bacteria. VII. Inhibition of NAD + reduction by phenethylbiguanide.
    Keister DL; Minton NJ
    Arch Biochem Biophys; 1972 Aug; 151(2):549-57. PubMed ID: 4339935
    [No Abstract]   [Full Text] [Related]  

  • 13. Origin of the ATP formed during the light-dependent oxygen uptake catalyzed by Rhodospirillum rubrum chromatophores.
    del Valle-Tascón S; Ramírez JM
    Z Naturforsch C Biosci; 1975; 30(1):46-52. PubMed ID: 47212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on bacterial photophosphorylation. I. Kinetics of photophosphorylation in Rhodospirillum rubrum chromatophores by flashing light.
    NISHIMURA M
    Biochim Biophys Acta; 1962 Feb; 57():88-95. PubMed ID: 14479977
    [No Abstract]   [Full Text] [Related]  

  • 15. Flash-induced photophosphorylation in Rhodospirillum rubrum chromatophores. I. The relationship between cytochrome c-420 content and photophosphorylation.
    del Valle-Tascon S; van Grondelle R; Duysens LN
    Biochim Biophys Acta; 1978 Oct; 504(1):26-39. PubMed ID: 213110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Substrate utilization and bacteriochlorophyll synthesis by Rhodospirillum rubrum under anaerobic conditions in the dark. I. Dependence of bacteriochlorophyl synthesis on substrate concentration and electron acceptor].
    Schön G
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):380-6. PubMed ID: 4145604
    [No Abstract]   [Full Text] [Related]  

  • 17. Light-dependent ATP formation in a non-phototrophic mutant of Rhodospirillum rubrum deficient in oxygen photoreduction.
    dell Valle-Tascón S; Giménez-Gallego G; Ramírez JM
    Biochem Biophys Res Commun; 1975 Sep; 66(2):514-9. PubMed ID: 810144
    [No Abstract]   [Full Text] [Related]  

  • 18. Redox-dependent CO2 reduction activity of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Staples CR; Ludden PW
    Biochemistry; 2001 Jun; 40(25):7604-11. PubMed ID: 11412114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-linked reactions in photosynthetic bacteria. II. The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of Rhodospirillum rubrum.
    Keister DL; Yike NJ
    Biochemistry; 1967 Dec; 6(12):3847-57. PubMed ID: 4383839
    [No Abstract]   [Full Text] [Related]  

  • 20. [Role of ferredoxin in the metabolism of hydrogen by Rhodospirillum rubrum].
    Gogotov IN; Laurinavichene TV
    Mikrobiologiia; 1975; 44(4):581-6. PubMed ID: 241001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.