These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22363622)

  • 1. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.
    Bozyk PD; Bentley JK; Popova AP; Anyanwu AC; Linn MD; Goldsmith AM; Pryhuber GS; Moore BB; Hershenson MB
    PLoS One; 2012; 7(2):e31336. PubMed ID: 22363622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.
    Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB
    Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycogen synthase kinase-3β/β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation.
    Popova AP; Bentley JK; Anyanwu AC; Richardson MN; Linn MJ; Lei J; Wong EJ; Goldsmith AM; Pryhuber GS; Hershenson MB
    Am J Physiol Lung Cell Mol Physiol; 2012 Sep; 303(5):L439-48. PubMed ID: 22773696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periostin downregulation is an early marker of inhibited neonatal murine lung alveolar septation.
    Ahlfeld SK; Gao Y; Wang J; Horgusluoglu E; Bolanis E; Clapp DW; Conway SJ
    Birth Defects Res A Clin Mol Teratol; 2013 Jun; 97(6):373-85. PubMed ID: 23723163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia.
    Alejandre-Alcázar MA; Kwapiszewska G; Reiss I; Amarie OV; Marsh LM; Sevilla-Pérez J; Wygrecka M; Eul B; Köbrich S; Hesse M; Schermuly RT; Seeger W; Eickelberg O; Morty RE
    Am J Physiol Lung Cell Mol Physiol; 2007 Feb; 292(2):L537-49. PubMed ID: 17071723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.
    Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.
    Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S
    Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide.
    Anyanwu AC; Bentley JK; Popova AP; Malas O; Alghanem H; Goldsmith AM; Hershenson MB; Pinsky DJ
    Am J Physiol Lung Cell Mol Physiol; 2014 Apr; 306(8):L749-63. PubMed ID: 24532288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia.
    Rath P; Nardiello C; Surate Solaligue DE; Agius R; Mižíková I; Hühn S; Mayer K; Vadász I; Herold S; Runkel F; Seeger W; Morty RE
    Pediatr Res; 2017 May; 81(5):795-805. PubMed ID: 28141790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curcumin augments lung maturation, preventing neonatal lung injury by inhibiting TGF-β signaling.
    Sakurai R; Li Y; Torday JS; Rehan VK
    Am J Physiol Lung Cell Mol Physiol; 2011 Nov; 301(5):L721-30. PubMed ID: 21821729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Mobility Group Box-1 Protein Disrupts Alveolar Elastogenesis of Hyperoxia-Injured Newborn Lungs.
    Yu B; Li X; Wan Q; Han W; Deng C; Guo C
    J Interferon Cytokine Res; 2016 Mar; 36(3):159-68. PubMed ID: 26982166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preconditioning the immature lung with enhanced Nrf2 activity protects against oxidant-induced hypoalveolarization in mice.
    Tamatam CM; Reddy NM; Potteti HR; Ankireddy A; Noone PM; Yamamoto M; Kensler TW; Reddy SP
    Sci Rep; 2020 Nov; 10(1):19034. PubMed ID: 33149211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-endoglin expression is induced in hyperoxia and contributes to altered pulmonary angiogenesis in bronchopulmonary dysplasia development.
    Lee Y; Lee J; Nam SK; Hoon Jun Y
    Sci Rep; 2020 Feb; 10(1):3043. PubMed ID: 32080296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension.
    Gong J; Feng Z; Peterson AL; Carr JF; Vang A; Braza J; Choudhary G; Dennery PA; Yao H
    J Pathol; 2020 Dec; 252(4):411-422. PubMed ID: 32815166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CCR2 Mediates Chronic LPS-Induced Pulmonary Inflammation and Hypoalveolarization in a Murine Model of Bronchopulmonary Dysplasia.
    Cui TX; Brady AE; Fulton CT; Zhang YJ; Rosenbloom LM; Goldsmith AM; Moore BB; Popova AP
    Front Immunol; 2020; 11():579628. PubMed ID: 33117383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia.
    Ahlfeld SK; Wang J; Gao Y; Snider P; Conway SJ
    Am J Pathol; 2016 Apr; 186(4):777-93. PubMed ID: 26878215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
    Velten M; Heyob KM; Rogers LK; Welty SE
    J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelsolin Attenuates Neonatal Hyperoxia-Induced Inflammatory Responses to Rhinovirus Infection and Preserves Alveolarization.
    Cui TX; Brady AE; Zhang YJ; Fulton CT; Popova AP
    Front Immunol; 2022; 13():792716. PubMed ID: 35173718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and activity of epithelial sodium channel in hyperoxia-induced bronchopulmonary dysplasia in neonatal rats.
    Ji W; Fu J; Nie H; Xue X
    Pediatr Int; 2012 Dec; 54(6):735-42. PubMed ID: 22591391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role and mechanism of epithelial-mesenchymal transition in a rat model of bronchopulmonary dysplasia induced by hyperoxia exposure].
    Lin YT; Yan CB; Hong WC; Cai C; Gong XH
    Zhongguo Dang Dai Er Ke Za Zhi; 2024 Jul; 26(7):765-773. PubMed ID: 39014955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.