BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22363664)

  • 1. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.
    Ma CW; Xiu ZL; Zeng AP
    PLoS One; 2012; 7(2):e31529. PubMed ID: 22363664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new concept to reveal protein dynamics based on energy dissipation.
    Ma CW; Xiu ZL; Zeng AP
    PLoS One; 2011; 6(10):e26453. PubMed ID: 22022616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring signal transduction in heteromultimeric protein based on energy dissipation model.
    Ma CW; Xiu ZL; Zeng AP
    J Biomol Struct Dyn; 2015; 33(1):134-46. PubMed ID: 24279729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production.
    Chen Z; Rappert S; Sun J; Zeng AP
    J Biotechnol; 2011 Jul; 154(4):248-54. PubMed ID: 21609739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine.
    Kotaka M; Ren J; Lockyer M; Hawkins AR; Stammers DK
    J Biol Chem; 2006 Oct; 281(42):31544-52. PubMed ID: 16905770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic energy correlation analysis of
    Wang S; Ma C; Zeng AP
    Eng Life Sci; 2021 May; 21(5):314-323. PubMed ID: 33976604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase.
    Marco-Marín C; Ramón-Maiques S; Tavárez S; Rubio V
    J Mol Biol; 2003 Nov; 334(3):459-76. PubMed ID: 14623187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.
    Stetz G; Verkhivker GM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005299. PubMed ID: 28095400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics.
    Pandini A; Fornili A; Fraternali F; Kleinjung J
    FASEB J; 2012 Feb; 26(2):868-81. PubMed ID: 22071506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways.
    Tse A; Verkhivker GM
    PLoS One; 2016; 11(11):e0166583. PubMed ID: 27861609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: a docking and molecular dynamics study.
    Chaitanya M; Babajan B; Anuradha CM; Naveen M; Rajasekhar C; Madhusudana P; Kumar CS
    J Mol Model; 2010 Aug; 16(8):1357-67. PubMed ID: 20140471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression in Escherichia coli, purification and kinetic analysis of the aspartokinase and aspartate semialdehyde dehydrogenase from the rifamycin SV-producing Amycolatopsis mediterranei U32.
    Zhang WW; Jiang WH; Zhao GP; Yang YL; Chiao JS
    Appl Microbiol Biotechnol; 2000 Jul; 54(1):52-8. PubMed ID: 10952005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production.
    Chen Z; Meyer W; Rappert S; Sun J; Zeng AP
    Appl Environ Microbiol; 2011 Jul; 77(13):4352-60. PubMed ID: 21531824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, crystallization and preliminary X-ray analysis of aspartokinase III from Escherichia coli.
    Blanco J; Viola RE
    Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):352-4. PubMed ID: 11807275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli.
    Kikuchi Y; Kojima H; Tanaka T
    FEMS Microbiol Lett; 1999 Apr; 173(1):211-5. PubMed ID: 10220897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.
    Stetz G; Verkhivker GM
    J Chem Inf Model; 2016 Aug; 56(8):1490-517. PubMed ID: 27447295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine-sensitive aspartokinase of Escherichia coli K12. Synergy and autosynergy in an allosteric V system.
    Mazat JP; Patte JC
    Biochemistry; 1976 Sep; 15(18):4053-8. PubMed ID: 183809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-consistent structural perturbation approach for determining the magnitude and extent of allosteric coupling in proteins.
    Rajasekaran N; Naganathan AN
    Biochem J; 2017 Jul; 474(14):2379-2388. PubMed ID: 28522638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.