BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 22364558)

  • 1. Iron-regulatory gene expression during liver regeneration.
    Mollbrink A; Holmström P; Sjöström M; Hultcrantz R; Eriksson LC; Stål P
    Scand J Gastroenterol; 2012 May; 47(5):591-600. PubMed ID: 22364558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory networks for the control of body iron homeostasis and their dysregulation in HFE mediated hemochromatosis.
    Ludwiczek S; Theurl I; Bahram S; Schümann K; Weiss G
    J Cell Physiol; 2005 Aug; 204(2):489-99. PubMed ID: 15744772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression.
    Schmidt PJ; Toran PT; Giannetti AM; Bjorkman PJ; Andrews NC
    Cell Metab; 2008 Mar; 7(3):205-14. PubMed ID: 18316026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular pathogenesis of hereditary hemochromatosis.
    Babitt JL; Lin HY
    Semin Liver Dis; 2011 Aug; 31(3):280-92. PubMed ID: 21901658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into iron homeostasis through the study of non-HFE hereditary haemochromatosis.
    Roetto A; Camaschella C
    Best Pract Res Clin Haematol; 2005 Jun; 18(2):235-50. PubMed ID: 15737887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes.
    Ramey G; Deschemin JC; Vaulont S
    Haematologica; 2009 Jun; 94(6):765-72. PubMed ID: 19454495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6.
    Truksa J; Peng H; Lee P; Beutler E
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10289-10293. PubMed ID: 16801541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways underlying iron accumulation in human nonalcoholic fatty liver disease.
    Aigner E; Theurl I; Theurl M; Lederer D; Haufe H; Dietze O; Strasser M; Datz C; Weiss G
    Am J Clin Nutr; 2008 May; 87(5):1374-83. PubMed ID: 18469261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe.
    Corradini E; Rozier M; Meynard D; Odhiambo A; Lin HY; Feng Q; Migas MC; Britton RS; Babitt JL; Fleming RE
    Gastroenterology; 2011 Nov; 141(5):1907-14. PubMed ID: 21745449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression.
    Gao J; Chen J; Kramer M; Tsukamoto H; Zhang AS; Enns CA
    Cell Metab; 2009 Mar; 9(3):217-27. PubMed ID: 19254567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatocyte-targeted HFE and TFR2 control hepcidin expression in mice.
    Gao J; Chen J; De Domenico I; Koeller DM; Harding CO; Fleming RE; Koeberl DD; Enns CA
    Blood; 2010 Apr; 115(16):3374-81. PubMed ID: 20177050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of the hemochromatosis protein HFE: Lessons from animal models.
    Pantopoulos K
    World J Gastroenterol; 2008 Dec; 14(45):6893-901. PubMed ID: 19058322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of gene expression of iron regulatory proteins during turpentine oil-induced acute-phase response in the rat.
    Sheikh N; Dudas J; Ramadori G
    Lab Invest; 2007 Jul; 87(7):713-25. PubMed ID: 17417667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of hemochromatosis protein and transferrin receptor 2 causes iron-induced liver injury in mice.
    Delima RD; Chua AC; Tirnitz-Parker JE; Gan EK; Croft KD; Graham RM; Olynyk JK; Trinder D
    Hepatology; 2012 Aug; 56(2):585-93. PubMed ID: 22383097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice.
    Ramos E; Kautz L; Rodriguez R; Hansen M; Gabayan V; Ginzburg Y; Roth MP; Nemeth E; Ganz T
    Hepatology; 2011 Apr; 53(4):1333-41. PubMed ID: 21480335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemochromatosis: genetics and pathophysiology.
    Beutler E
    Annu Rev Med; 2006; 57():331-47. PubMed ID: 16409153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability.
    Ludwiczek S; Theurl I; Artner-Dworzak E; Chorney M; Weiss G
    J Mol Med (Berl); 2004 Jun; 82(6):373-82. PubMed ID: 15173932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contribution of iron genes, dysmetabolism and hepatitis C virus (HCV) in the pathogenesis of altered iron regulation in HCV chronic hepatitis.
    Valenti L; Pulixi EA; Arosio P; Cremonesi L; Biasiotto G; Dongiovanni P; Maggioni M; Fargion S; Fracanzani AL
    Haematologica; 2007 Aug; 92(8):1037-42. PubMed ID: 17640859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologic systemic iron metabolism in mice deficient for duodenal Hfe.
    Vujic Spasic M; Kiss J; Herrmann T; Kessler R; Stolte J; Galy B; Rathkolb B; Wolf E; Stremmel W; Hentze MW; Muckenthaler MU
    Blood; 2007 May; 109(10):4511-7. PubMed ID: 17264297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis.
    Vokurka M; Krijt J; Sulc K; Necas E
    Physiol Res; 2006; 55(6):667-674. PubMed ID: 16497104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.