These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22364571)

  • 1. Quantitative structure-reactivity study of electrochemical oxidation of phenolic compounds at the SnO2-based electrode.
    Tian M; Thind SS; Simko M; Gao F; Chen A
    J Phys Chem A; 2012 Mar; 116(11):2927-34. PubMed ID: 22364571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Oxidation of Phenolic Compounds at Boron-Doped Diamond Anodes: Structure-Reactivity Relationships.
    Jiang Y; Zhu X; Xing X
    J Phys Chem A; 2017 Jun; 121(22):4326-4333. PubMed ID: 28493699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A QSPR study of O-H bond dissociation energy in phenols.
    Bosque R; Sales J
    J Chem Inf Comput Sci; 2003; 43(2):637-42. PubMed ID: 12653532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag⁺/TiO₂: Influence of electron donating and withdrawing substituents.
    Xiao J; Xie Y; Han Q; Cao H; Wang Y; Nawaz F; Duan F
    J Hazard Mater; 2016 Mar; 304():126-33. PubMed ID: 26547621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals.
    Long X; Niu J
    Chemosphere; 2007 May; 67(10):2028-34. PubMed ID: 17239921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of quantum topological molecular similarity descriptors in QSPR study of the O-methylation of substituted phenols.
    Hemmateenejad B; Mohajeri A
    J Comput Chem; 2008 Jan; 29(2):266-74. PubMed ID: 17573673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-property relationship studies on electrochemical degradation of substituted phenols using a support vector machine.
    Yuan S; Xiao M; Zheng G; Tian M; Lu X
    SAR QSAR Environ Res; 2006 Oct; 17(5):473-81. PubMed ID: 17050187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-way analysis of quantum topological molecular similarity descriptors for modeling acidity constant of some phenolic compounds.
    Esteki M; Hemmateenejad B; Khayamian T; Mohajeri A
    Chem Biol Drug Des; 2007 Nov; 70(5):413-23. PubMed ID: 17949359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear free energy relationship for 4-substituted (o-phenylenediamine)platinum(II) dichloride derivatives using quantum mechanical descriptors.
    Costa LA; Rocha WR; De Almeida WB; Dos Santos HF
    J Inorg Biochem; 2005 Feb; 99(2):575-83. PubMed ID: 15621292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol.
    Fang L; Huang J; Yu G; Li X
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1587-93. PubMed ID: 18995905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modification of the Hammett equation for predicting ionisation constants of p-vinyl phenols.
    Sipilä J; Nurmi H; Kaukonen AM; Hirvonen J; Taskinen J; Yli-Kauhaluoma J
    Eur J Pharm Sci; 2005; 25(4-5):417-25. PubMed ID: 15979536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting pK(a) values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes.
    Svobodová Vareková R; Geidl S; Ionescu CM; Skrehota O; Kudera M; Sehnal D; Bouchal T; Abagyan R; Huber HJ; Koca J
    J Chem Inf Model; 2011 Aug; 51(8):1795-806. PubMed ID: 21761919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the electrochemical and spectroelectrochemical properties of diruthenium(III,II) complexes containing four identical unsymmetrical bridging ligands.
    Kadish KM; Wang LL; Thuriere A; Van Caemelbecke E; Bear JL
    Inorg Chem; 2003 Feb; 42(3):834-43. PubMed ID: 12562197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenolic antioxidants: electrochemical behavior and the mechanistic elements underlying their anodic oxidation reaction.
    Cheng Z; Ren J; Li Y; Chang W; Chen Z
    Redox Rep; 2002; 7(6):395-402. PubMed ID: 12625947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.
    Golmohammadi H
    J Comput Chem; 2009 Nov; 30(15):2455-65. PubMed ID: 19360793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSPR analysis of the toxicity of aromatic compounds to the algae (Scenedesmus obliquus).
    Saçan MT; Ozkul M; Erdem SS
    Chemosphere; 2007 Jun; 68(4):695-702. PubMed ID: 17360023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds.
    Mercader AG; Duchowicz PR; Fernández FM; Castro EA; Cabrerizo FM; Thomas AH
    J Mol Graph Model; 2009 Aug; 28(1):12-9. PubMed ID: 19386526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, spectroscopic and electrochemical studies on bis-[1,3-substituted (Cl, Br) phenyl-5-phenyl formazanato]nickel(II) complexes.
    Tezcan H; Uzluk E; Aksu ML
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Oct; 70(5):973-82. PubMed ID: 18055250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-catalytic degradation of phenol on several metal-oxide anodes.
    Wang YQ; Gu B; Xu WL
    J Hazard Mater; 2009 Mar; 162(2-3):1159-64. PubMed ID: 18684560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.