BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22364649)

  • 1. Mechanisms for CO production from CO2 using reduced rhenium tricarbonyl catalysts.
    Agarwal J; Fujita E; Schaefer HF; Muckerman JT
    J Am Chem Soc; 2012 Mar; 134(11):5180-6. PubMed ID: 22364649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of a binuclear species with the Re-C(O)O-Re moiety in CO2 reduction catalyzed by tricarbonyl rhenium(I) complexes with diimine ligands: strikingly slow formation of the Re-Re and Re-C(O)O-Re species from Re(dmb)(CO)3S (dmb = 4,4'-dimethyl-2,2'-bipyridine, S = solvent).
    Hayashi Y; Kita S; Brunschwig BS; Fujita E
    J Am Chem Soc; 2003 Oct; 125(39):11976-87. PubMed ID: 14505419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of CO2 on a tricarbonyl rhenium(I) complex: modeling a catalytic cycle.
    Agarwal J; Johnson RP; Li G
    J Phys Chem A; 2011 Apr; 115(13):2877-81. PubMed ID: 21410231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.
    Morris AJ; Meyer GJ; Fujita E
    Acc Chem Res; 2009 Dec; 42(12):1983-94. PubMed ID: 19928829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Study for CO
    Li X; Panetier JA
    ACS Catal; 2021 Nov; 11(21):12989-13000. PubMed ID: 36860803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the intermediates of photochemical CO2 reduction: reaction of Re(dmb)(CO)3 COOH with CO2.
    Agarwal J; Sanders BC; Fujita E; Schaefer HF; Harrop TC; Muckerman JT
    Chem Commun (Camb); 2012 Jul; 48(54):6797-9. PubMed ID: 22643822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sterically hindered Re- and Mn-CO
    Shipp JD; Carson H; Spall SJP; Parker SC; Chekulaev D; Jones N; Mel'nikov MY; Robertson CC; Meijer AJHM; Weinstein JA
    Dalton Trans; 2020 Apr; 49(14):4230-4243. PubMed ID: 32104876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New light-harvesting molecular systems constructed with a Ru(II) complex and a linear-shaped Re(I) oligomer.
    Yamamoto Y; Tamaki Y; Yui T; Koike K; Ishitani O
    J Am Chem Soc; 2010 Aug; 132(33):11743-52. PubMed ID: 20666469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of electrochemically generated rhenium (II) Tricarbonyl alpha-diimine complexes: a reinvestigation of the oxidation of luminescent Re(CO)3(alpha-Diimine)Cl and related compounds.
    Bullock JP; Carter E; Johnson R; Kennedy AT; Key SE; Kraft BJ; Saxon D; Underwood P
    Inorg Chem; 2008 Sep; 47(17):7880-7. PubMed ID: 18681426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanisms of the reactions of W and W+ with COx (x=1, 2): a computational study.
    Musaev DG; Irle S; Lin MC
    J Phys Chem A; 2007 Jul; 111(29):6665-73. PubMed ID: 17388392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.
    Li N; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Nov; 114(43):11670-80. PubMed ID: 20942474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies.
    Takeda H; Koike K; Inoue H; Ishitani O
    J Am Chem Soc; 2008 Feb; 130(6):2023-31. PubMed ID: 18205359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemistry and photophysics of a Pd(II) metalloporphyrin: Re(I) tricarbonyl bipyridine molecular dyad and its activity toward the photoreduction of CO2 to CO.
    Schneider J; Vuong KQ; Calladine JA; Sun XZ; Whitwood AC; George MW; Perutz RN
    Inorg Chem; 2011 Dec; 50(23):11877-89. PubMed ID: 22043811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical ligand substitution reactions of fac-[Re(bpy)(CO)3Cl] and derivatives.
    Sato S; Sekine A; Ohashi Y; Ishitani O; Blanco-Rodríguez AM; Vlcek A; Unno T; Koike K
    Inorg Chem; 2007 Apr; 46(9):3531-40. PubMed ID: 17385851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts.
    Manbeck GF; Muckerman JT; Szalda DJ; Himeda Y; Fujita E
    J Phys Chem B; 2015 Jun; 119(24):7457-66. PubMed ID: 25697424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards new molecular photocatalysts for CO2 reduction: photo-induced electron transfer versus CO dissociation within [Os(NN)(CO)2Cl2] Complexes.
    Chauvin J; Lafolet F; Chardon-Noblat S; Deronzier A; Jakonen M; Haukka M
    Chemistry; 2011 Apr; 17(15):4313-22. PubMed ID: 21374746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism.
    Burch R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhenium and technetium tricarbonyl complexes anchored by pyrazole-based tripods: novel lead structures for the design of myocardial imaging agents.
    Maria L; Cunha S; Videira M; Gano L; Paulo A; Santos IC; Santos I
    Dalton Trans; 2007 Jul; (28):3010-9. PubMed ID: 17622418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, structure, photophysical and electrochemiluminescence properties of Re(I) tricarbonyl complexes incorporating pyrazolyl-pyridyl-based ligands.
    Wei QH; Xiao FN; Han LJ; Zeng SL; Duan YN; Chen GN
    Dalton Trans; 2011 May; 40(18):5078-85. PubMed ID: 21451882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.