These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 22364779)

  • 1. Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition.
    Liu JX; Zheng CH; Xu Y
    Comput Biol Med; 2012 May; 42(5):582-9. PubMed ID: 22364779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A class-information-based penalized matrix decomposition for identifying plants core genes responding to abiotic stresses.
    Liu JX; Liu J; Gao YL; Mi JX; Ma CX; Wang D
    PLoS One; 2014; 9(9):e106097. PubMed ID: 25180509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on plant abiotic stress responses in the post-genome era: past, present and future.
    Hirayama T; Shinozaki K
    Plant J; 2010 Mar; 61(6):1041-52. PubMed ID: 20409277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An omics approach to understand the plant abiotic stress.
    Debnath M; Pandey M; Bisen PS
    OMICS; 2011 Nov; 15(11):739-62. PubMed ID: 22122668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses.
    Kant P; Gordon M; Kant S; Zolla G; Davydov O; Heimer YM; Chalifa-Caspi V; Shaked R; Barak S
    Plant Cell Environ; 2008 Jun; 31(6):697-714. PubMed ID: 18182014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of DREBs in regulation of abiotic stress responses in plants.
    Lata C; Prasad M
    J Exp Bot; 2011 Oct; 62(14):4731-48. PubMed ID: 21737415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering the transcriptional modules using microarray data by penalized matrix decomposition.
    Zhang J; Zheng CH; Liu JX; Wang HQ
    Comput Biol Med; 2011 Nov; 41(11):1041-50. PubMed ID: 22001074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications.
    Chen TH; Murata N
    Plant Cell Environ; 2011 Jan; 34(1):1-20. PubMed ID: 20946588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.
    Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY
    Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants.
    Piao HL; Xuan YH; Park SH; Je BI; Park SJ; Park SH; Kim CM; Huang J; Wang GK; Kim MJ; Kang SM; Lee IJ; Kwon TR; Kim YH; Yeo US; Yi G; Son D; Han CD
    Mol Cells; 2010 Jul; 30(1):19-27. PubMed ID: 20652492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibitors of proteolytic enzymes under abiotic stresses in plants (review)].
    Mosolov VV; Valueva TA
    Prikl Biokhim Mikrobiol; 2011; 47(5):501-7. PubMed ID: 22232890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin regulation functions in plant abiotic stress responses.
    Kim JM; To TK; Nishioka T; Seki M
    Plant Cell Environ; 2010 Apr; 33(4):604-11. PubMed ID: 19930132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis.
    Ben Saad R; Fabre D; Mieulet D; Meynard D; Dingkuhn M; Al-Doss A; Guiderdoni E; Hassairi A
    Plant Cell Environ; 2012 Mar; 35(3):626-43. PubMed ID: 21988523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses.
    Harada E; Kim JA; Meyer AJ; Hell R; Clemens S; Choi YE
    Plant Cell Physiol; 2010 Oct; 51(10):1627-37. PubMed ID: 20693332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic and biotic stresses and changes in the lignin content and composition in plants.
    Moura JC; Bonine CA; de Oliveira Fernandes Viana J; Dornelas MC; Mazzafera P
    J Integr Plant Biol; 2010 Apr; 52(4):360-76. PubMed ID: 20377698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber.
    Wan H; Zhao Z; Qian C; Sui Y; Malik AA; Chen J
    Anal Biochem; 2010 Apr; 399(2):257-61. PubMed ID: 20005862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of soybean GmbZIP132 under abscisic acid and salt stresses.
    Liao Y; Zhang JS; Chen SY; Zhang WK
    J Integr Plant Biol; 2008 Feb; 50(2):221-30. PubMed ID: 18713445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Omics' analyses of regulatory networks in plant abiotic stress responses.
    Urano K; Kurihara Y; Seki M; Shinozaki K
    Curr Opin Plant Biol; 2010 Apr; 13(2):132-8. PubMed ID: 20080055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray.
    Lee SC; Lim MH; Kim JA; Lee SI; Kim JS; Jin M; Kwon SJ; Mun JH; Kim YK; Kim HU; Hur Y; Park BS
    Mol Cells; 2008 Dec; 26(6):595-605. PubMed ID: 18797175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.