These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 2236495)
1. Affinity isolation of heat-shock and other calmodulin-binding proteins following hyperthermia. Evans DP; Tomasovic SP Radiat Res; 1990 Oct; 124(1):50-6. PubMed ID: 2236495 [TBL] [Abstract][Full Text] [Related]
2. Heat-stress proteins and thermal resistance in rat mammary tumor cells. Tomasovic SP; Steck PA; Heitzman D Radiat Res; 1983 Aug; 95(2):399-413. PubMed ID: 6611857 [TBL] [Abstract][Full Text] [Related]
3. Altered synthesis of the 26-kDa heat stress protein family and thermotolerance in cell lines with elevated levels of calcium-binding proteins. Evans DP; Simonette RA; Rasmussen CD; Means AR; Tomasovic SP J Cell Physiol; 1990 Mar; 142(3):615-27. PubMed ID: 2312618 [TBL] [Abstract][Full Text] [Related]
4. The effect of calmodulin antagonists on hyperthermic cell killing and the development of thermotolerance. Evans DP; Tomasovic SP Int J Hyperthermia; 1989; 5(5):563-78. PubMed ID: 2768893 [TBL] [Abstract][Full Text] [Related]
5. Protection of Chinese hamster ovary cells from heat killing by treatment with cycloheximide or puromycin: involvement of HSPs? Lee YJ; Dewey WC; Li GC Radiat Res; 1987 Aug; 111(2):237-53. PubMed ID: 3628714 [TBL] [Abstract][Full Text] [Related]
6. Effect of cycloheximide or puromycin on induction of thermotolerance by heat in Chinese hamster ovary cells: dose fractionation at 45.5 degrees C1. Lee YJ; Dewey WC Cancer Res; 1987 Nov; 47(22):5960-6. PubMed ID: 3664499 [TBL] [Abstract][Full Text] [Related]
7. Acute extracellular acidification increases nuclear associated protein levels in human melanoma cells during 42 degrees C hyperthermia and enhances cell killing. Han JS; Storck CW; Wachsberger PR; Leeper DB; Berd D; Wahl ML; Coss RA Int J Hyperthermia; 2002; 18(5):404-15. PubMed ID: 12227927 [TBL] [Abstract][Full Text] [Related]
8. Heat transient related changes in stress-protein synthesis. Tomasovic SP; Sinha A; Steck PA Radiat Res; 1985 Jun; 102(3):336-46. PubMed ID: 4070548 [TBL] [Abstract][Full Text] [Related]
9. Effects of calcium buffering on the synthesis of the 26-kDa heat-shock protein family. Evans DP; Corbin JR; Tomasovic SP Radiat Res; 1991 Sep; 127(3):261-8. PubMed ID: 1886981 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneity in induced heat resistance and its relation to synthesis of stress proteins in rat tumor cell clones. Tomasovic SP; Rosenblatt PL; Johnston DA; Tang K; Lee PS Cancer Res; 1984 Dec; 44(12 Pt 1):5850-6. PubMed ID: 6498845 [TBL] [Abstract][Full Text] [Related]
11. Identification of Ca2+-dependent calmodulin-binding proteins in rat spermatogenic cells as complexes of the heat-shock proteins. Moriya M; Ochiai M; Yuasa HJ; Suzuki N; Yazawa M Mol Reprod Dev; 2004 Nov; 69(3):316-24. PubMed ID: 15349844 [TBL] [Abstract][Full Text] [Related]
12. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins. Lee YJ; Dewey WC J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553 [TBL] [Abstract][Full Text] [Related]
13. Influence of rate of heating on thermosensitivity of L1210 leukemia: membrane lipids and Mr 70,000 heat shock protein. Burns CP; Lambert BJ; Haugstad BN; Guffy MM Cancer Res; 1986 Apr; 46(4 Pt 1):1882-7. PubMed ID: 3948170 [TBL] [Abstract][Full Text] [Related]
14. Induction of heat shock proteins in Chinese hamster ovary cells and development of thermotolerance by intermediate concentrations of puromycin. Lee YJ; Dewey WC J Cell Physiol; 1987 Jul; 132(1):1-11. PubMed ID: 3597546 [TBL] [Abstract][Full Text] [Related]
15. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus tegula) from different tidal heights. Tomanek L; Somero GN Physiol Biochem Zool; 2000; 73(2):249-56. PubMed ID: 10801403 [TBL] [Abstract][Full Text] [Related]
16. Alterations in specific and general protein synthesis after heat shock in heat-sensitive mutants of CHO cells and their wild-type counterparts. Harvey WF; Bedford JS; Li GC Radiat Res; 1990 Oct; 124(1 Suppl):S88-97. PubMed ID: 2236516 [TBL] [Abstract][Full Text] [Related]
17. The adaptor Grb7 is a novel calmodulin-binding protein: functional implications of the interaction of calmodulin with Grb7. Li H; Sánchez-Torres J; del Carpio AF; Nogales-González A; Molina-Ortiz P; Moreno MJ; Török K; Villalobo A Oncogene; 2005 Jun; 24(26):4206-19. PubMed ID: 15806159 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobic interaction of the Ca2+-calmodulin complex with calmodulin antagonists. Naphthalenesulfonamide derivatives. Tanaka T; Ohmura T; Hidaka H Mol Pharmacol; 1982 Sep; 22(2):403-7. PubMed ID: 7144734 [TBL] [Abstract][Full Text] [Related]
19. Heat shock protein synthesis and cell survival in clones of normal and simian virus 40-transformed mouse embryo cells. Omar RA; Lanks KW Cancer Res; 1984 Sep; 44(9):3976-82. PubMed ID: 6331661 [TBL] [Abstract][Full Text] [Related]
20. Symmetric covalent linkage of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) results in novel derivatives with increased inhibitory activities against calcium/calmodulin complex. Yokokura H; Osawa M; Inoue T; Umezawa I; Naito Y; Ikura M; Hidaka H Drug Des Discov; 1999 Nov; 16(3):203-16. PubMed ID: 10624566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]