These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 2236507)
21. Hypertonic treatment does not affect the radiation yield of interphase chromosome breaks in DNA double-strand break repair-deficient xrs-5 cells. Okayasu R; Varlotto J; Iliakis G Radiat Res; 1993 Aug; 135(2):171-7. PubMed ID: 8367588 [TBL] [Abstract][Full Text] [Related]
22. The biological effectiveness of radon-progeny alpha particles. IV. Morphological transformation of Syrian hamster embryo cells at low doses. Martin SG; Miller RC; Geard CR; Hall EJ Radiat Res; 1995 Apr; 142(1):70-7. PubMed ID: 7899561 [TBL] [Abstract][Full Text] [Related]
23. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection. Rydberg B Radiat Res; 1996 Feb; 145(2):200-9. PubMed ID: 8606930 [TBL] [Abstract][Full Text] [Related]
24. Mammalian cell killing by ultrasoft X rays and high-energy radiation: an extension of the MK model. Hawkins RB Radiat Res; 2006 Aug; 166(2):431-42. PubMed ID: 16881744 [TBL] [Abstract][Full Text] [Related]
25. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells. Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034 [TBL] [Abstract][Full Text] [Related]
26. Chromatin loops are responsible for higher counts of small DNA fragments induced by high-LET radiation, while chromosomal domains do not affect the fragment sizes. Ponomarev AL; Cucinotta FA Int J Radiat Biol; 2006 Apr; 82(4):293-305. PubMed ID: 16690597 [TBL] [Abstract][Full Text] [Related]
27. A Monte Carlo/Markov chain model for the association of data for chromosome aberrations and formation of micronuclei. Hahnfeldt P; Hlatky LR Radiat Res; 1994 May; 138(2):239-45. PubMed ID: 8183993 [TBL] [Abstract][Full Text] [Related]
28. Telomere length in mammalian cells exposed to low- and high-LET radiations. Sgura A; Antoccia A; Berardinelli F; Cherubini R; Gerardi S; Zilio C; Tanzarella C Radiat Prot Dosimetry; 2006; 122(1-4):176-9. PubMed ID: 17223635 [TBL] [Abstract][Full Text] [Related]
29. Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. Friedland W; Jacob P; Paretzke HG; Stork T Radiat Res; 1998 Aug; 150(2):170-82. PubMed ID: 9692362 [TBL] [Abstract][Full Text] [Related]
30. Joining of correct and incorrect DNA ends at double-strand breaks produced by high-linear energy transfer radiation in human fibroblasts. Löbrich M; Cooper PK; Rydberg B Radiat Res; 1998 Dec; 150(6):619-26. PubMed ID: 9840181 [TBL] [Abstract][Full Text] [Related]
31. Cell sensitivity to irradiation and DNA repair processes. II. The cell sensitivity to ionizing radiation of different LETs. Kozubek S; Krasavin EA Neoplasma; 1984; 31(6):685-95. PubMed ID: 6395028 [TBL] [Abstract][Full Text] [Related]
32. Monte Carlo simulation of DNA strand breaks induced by monoenergetic electrons using higher-order structure models of DNA. Tomita H; Kai M; Kusama T; Aoki Y; Ito A Int J Radiat Biol; 1994 Dec; 66(6):669-82. PubMed ID: 7814967 [TBL] [Abstract][Full Text] [Related]
33. Modelling the effect of incorporated halogenated pyrimidine on radiation-induced DNA strand breaks. Watanabe R; Nikjoo H Int J Radiat Biol; 2002 Nov; 78(11):953-66. PubMed ID: 12456283 [TBL] [Abstract][Full Text] [Related]
34. Dose response of gamma rays and iron nuclei for induction of chromosomal aberrations in normal and repair-deficient cell lines. George KA; Hada M; Jackson LJ; Elliott T; Kawata T; Pluth JM; Cucinotta FA Radiat Res; 2009 Jun; 171(6):752-63. PubMed ID: 19580482 [TBL] [Abstract][Full Text] [Related]
35. Calculation of the energy deposition in nanovolumes by protons and HZE particles: geometric patterns of initial distributions of DNA repair foci. Plante I; Ponomarev AL; Cucinotta FA Phys Med Biol; 2013 Sep; 58(18):6393-405. PubMed ID: 23999659 [TBL] [Abstract][Full Text] [Related]
36. [Quantitative description of the process of radiation inactivation of cells. VII. Nature of primary radiation lesions leading to reproductive cell death]. Barsukov VS Tsitologiia; 1975 Jul; 17(7):846-53. PubMed ID: 1162748 [TBL] [Abstract][Full Text] [Related]
37. Effect of radiation quality on lesion complexity in cellular DNA. Prise KM; Folkard M; Newman HC; Michael BD Int J Radiat Biol; 1994 Nov; 66(5):537-42. PubMed ID: 7983442 [TBL] [Abstract][Full Text] [Related]
38. [Quantitative description of the process of radiation inactivation of cells. VI. Calculation of the modifications in the dose survival relationship of eukaryotic cells]. Barsukov VS Tsitologiia; 1975 Mar; 17(3):314-20. PubMed ID: 1135951 [TBL] [Abstract][Full Text] [Related]
39. The progress of radiobiological models in modern radiotherapy with emphasis on the uncertainty issue. Wang CK Mutat Res; 2010; 704(1-3):175-81. PubMed ID: 20178860 [TBL] [Abstract][Full Text] [Related]
40. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. IV. Biophysical interpretation. Goodhead DT; Munson RJ; Thacker J; Cox R Int J Radiat Biol Relat Stud Phys Chem Med; 1980 Feb; 37(2):135-67. PubMed ID: 6966263 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]