BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22365247)

  • 1. Idiopathic pulmonary fibrosis: pathobiology of novel approaches to treatment.
    Maher TM
    Clin Chest Med; 2012 Mar; 33(1):69-83. PubMed ID: 22365247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging therapeutic interventions for idiopathic pulmonary fibrosis.
    Chakraborty S; Chopra P; Ambi SV; Dastidar SG; Ray A
    Expert Opin Investig Drugs; 2014 Jul; 23(7):893-910. PubMed ID: 24766571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of TGF-β Signaling in Lung Cancer Associated with Idiopathic Pulmonary Fibrosis.
    Saito A; Horie M; Micke P; Nagase T
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30445777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic targets in idiopathic pulmonary fibrosis.
    Kolb M; Bonella F; Wollin L
    Respir Med; 2017 Oct; 131():49-57. PubMed ID: 28947042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGFbeta signaling and the myofibroblast.
    Gharaee-Kermani M; Hu B; Phan SH; Gyetko MR
    Curr Med Chem; 2009; 16(11):1400-17. PubMed ID: 19355895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current advances in idiopathic pulmonary fibrosis: the pathogenesis, therapeutic strategies and candidate molecules.
    Lv M; Liu Y; Ma S; Yu Z
    Future Med Chem; 2019 Oct; 11(19):2595-2620. PubMed ID: 31633402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling.
    Oruqaj G; Karnati S; Vijayan V; Kotarkonda LK; Boateng E; Zhang W; Ruppert C; Günther A; Shi W; Baumgart-Vogt E
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):E2048-57. PubMed ID: 25848047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do all patients with idiopathic pulmonary fibrosis warrant a trial of therapeutic intervention? A pro-con perspective.
    Moodley Y; Corte T; Richeldi L; King TE
    Respirology; 2015 Apr; 20(3):389-94. PubMed ID: 25727967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis.
    Cigna N; Farrokhi Moshai E; Brayer S; Marchal-Somme J; Wémeau-Stervinou L; Fabre A; Mal H; Lesèche G; Dehoux M; Soler P; Crestani B; Mailleux AA
    Am J Pathol; 2012 Dec; 181(6):2126-37. PubMed ID: 23031257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Imbalance in Idiopathic Pulmonary Fibrosis: A Role for Oxidant Cross-Talk Between NADPH Oxidase Enzymes and Mitochondria.
    Veith C; Boots AW; Idris M; van Schooten FJ; van der Vliet A
    Antioxid Redox Signal; 2019 Nov; 31(14):1092-1115. PubMed ID: 30793932
    [No Abstract]   [Full Text] [Related]  

  • 11. Idiopathic Pulmonary Fibrosis: Current Status, Recent Progress, and Emerging Targets.
    Liu YM; Nepali K; Liou JP
    J Med Chem; 2017 Jan; 60(2):527-553. PubMed ID: 28122457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCN5 overexpression inhibits profibrotic phenotypes via the PI3K/Akt signaling pathway in lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis and in an in vivo model of lung fibrosis.
    Zhang L; Li Y; Liang C; Yang W
    Int J Mol Med; 2014 Feb; 33(2):478-86. PubMed ID: 24276150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin.
    Hosseinzadeh A; Javad-Moosavi SA; Reiter RJ; Hemati K; Ghaznavi H; Mehrzadi S
    Life Sci; 2018 May; 201():17-29. PubMed ID: 29567077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic targets and early stage clinical trials for pulmonary fibrosis.
    Sato S; Yanagihara T; Kolb MRJ
    Expert Opin Investig Drugs; 2019 Jan; 28(1):19-28. PubMed ID: 30513000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tubastatin ameliorates pulmonary fibrosis by targeting the TGFβ-PI3K-Akt pathway.
    Saito S; Zhuang Y; Shan B; Danchuk S; Luo F; Korfei M; Guenther A; Lasky JA
    PLoS One; 2017; 12(10):e0186615. PubMed ID: 29045477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pirfenidone in idiopathic pulmonary fibrosis.
    Maher TM
    Drugs Today (Barc); 2010 Jul; 46(7):473-82. PubMed ID: 20683502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Newer developments in idiopathic pulmonary fibrosis in the era of anti-fibrotic medications.
    Nair GB; Matela A; Kurbanov D; Raghu G
    Expert Rev Respir Med; 2016 Jun; 10(6):699-711. PubMed ID: 27094006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review.
    Fois AG; Paliogiannis P; Sotgia S; Mangoni AA; Zinellu E; Pirina P; Carru C; Zinellu A
    Respir Res; 2018 Mar; 19(1):51. PubMed ID: 29587761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Existing and emerging treatments for idiopathic pulmonary fibrosis.
    Kolilekas L; Papiris S; Bouros D
    Expert Rev Respir Med; 2019 Mar; 13(3):229-239. PubMed ID: 30632421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the treatment of idiopathic pulmonary fibrosis.
    Sergew A; Brown KK
    Expert Opin Emerg Drugs; 2015; 20(4):537-52. PubMed ID: 26629731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.