BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22365348)

  • 41. Selective carbohydrate utilization by lactobacilli and bifidobacteria.
    Watson D; O'Connell Motherway M; Schoterman MH; van Neerven RJ; Nauta A; van Sinderen D
    J Appl Microbiol; 2013 Apr; 114(4):1132-46. PubMed ID: 23240984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro.
    Palframan RJ; Gibson GR; Rastall RA
    Anaerobe; 2002 Oct; 8(5):287-92. PubMed ID: 16887671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Review article: prebiotics in the gastrointestinal tract.
    Macfarlane S; Macfarlane GT; Cummings JH
    Aliment Pharmacol Ther; 2006 Sep; 24(5):701-14. PubMed ID: 16918875
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detailed kinetic model describing new oligosaccharides synthesis using different β-galactosidases.
    Rodriguez-Fernandez M; Cardelle-Cobas A; Villamiel M; Banga JR
    J Biotechnol; 2011 May; 153(3-4):116-24. PubMed ID: 21440015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro evaluation of the fermentation properties of galactooligosaccharides synthesised by alpha-galactosidase from Lactobacillus reuteri.
    Tzortzis G; Goulas AK; Baillon ML; Gibson GR; Rastall RA
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):106-11. PubMed ID: 13680200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides.
    Vulevic J; Rastall RA; Gibson GR
    FEMS Microbiol Lett; 2004 Jul; 236(1):153-9. PubMed ID: 15212805
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selection and optimization procedure of synbiotic for cholesterol removal.
    Zhang F; Hang X; Fan X; Li G; Yang H
    Anaerobe; 2007; 13(5-6):185-92. PubMed ID: 17681806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional petit-suisse cheese: measure of the prebiotic effect.
    Cardarelli HR; Saad SM; Gibson GR; Vulevic J
    Anaerobe; 2007; 13(5-6):200-7. PubMed ID: 17611130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of prebiotic carbohydrates derived from cheese whey permeate by a combined process of isomerisation and transgalactosylation.
    Corzo-Martínez M; Copoví P; Olano A; Moreno FJ; Montilla A
    J Sci Food Agric; 2013 May; 93(7):1591-7. PubMed ID: 23096763
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures.
    Mäkeläinen H; Saarinen M; Stowell J; Rautonen N; Ouwehand AC
    Benef Microbes; 2010 Jun; 1(2):139-48. PubMed ID: 21840802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maple sap as a rich medium to grow probiotic lactobacilli and to produce lactic acid.
    Cochu A; Fourmier D; Halasz A; Hawari J
    Lett Appl Microbiol; 2008 Dec; 47(6):500-7. PubMed ID: 19120917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of prebiotic oligosaccharides and trehalose on growth and production of bacteriocins by lactic acid bacteria.
    Chen YS; Srionnual S; Onda T; Yanagida F
    Lett Appl Microbiol; 2007 Aug; 45(2):190-3. PubMed ID: 17651217
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Characteristics of Lactobacillus strains contained in pharmaceuticals].
    Banach W; Bucholc B; Wójcik B
    Med Dosw Mikrobiol; 2001; 53(2):143-9. PubMed ID: 11757423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of whey permeate containing in situ synthesised galacto-oligosaccharides for the growth and preservation of Lactobacillus plantarum.
    Golowczyc M; Vera C; Santos M; Guerrero C; Carasi P; Illanes A; Gómez-Zavaglia A; Tymczyszyn E
    J Dairy Res; 2013 Aug; 80(3):374-81. PubMed ID: 23876605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probiotic potential of 3 Lactobacilli strains isolated from breast milk.
    Martín R; Olivares M; Marín ML; Fernández L; Xaus J; Rodríguez JM
    J Hum Lact; 2005 Feb; 21(1):8-17; quiz 18-21, 41. PubMed ID: 15681631
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dietary modulation of gut functional ecology studied by fecal metabonomics.
    Martin FP; Sprenger N; Montoliu I; Rezzi S; Kochhar S; Nicholson JK
    J Proteome Res; 2010 Oct; 9(10):5284-95. PubMed ID: 20806900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by in vitro fermentation in bacterial communities derived from humans.
    Sulek K; Vigsnaes LK; Schmidt LR; Holck J; Frandsen HL; Smedsgaard J; Skov TH; Meyer AS; Licht TR
    Anaerobe; 2014 Aug; 28():68-77. PubMed ID: 24905430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures.
    Salazar N; Ruas-Madiedo P; Kolida S; Collins M; Rastall R; Gibson G; de Los Reyes-Gavilán CG
    Int J Food Microbiol; 2009 Nov; 135(3):260-7. PubMed ID: 19735956
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis Bb-12.
    Martinez RC; Aynaou AE; Albrecht S; Schols HA; De Martinis EC; Zoetendal EG; Venema K; Saad SM; Smidt H
    Int J Food Microbiol; 2011 Sep; 149(2):152-8. PubMed ID: 21741105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes.
    Goh YJ; Klaenhammer TR
    Annu Rev Food Sci Technol; 2015; 6():137-56. PubMed ID: 25532597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.