These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22365839)

  • 1. Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties.
    Shin K; Kim D; Cho JC; Lim HS; Kim JW; Suh KD
    J Colloid Interface Sci; 2012 May; 374(1):18-24. PubMed ID: 22365839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative electrorheological behavior in suspensions of inorganic particles.
    Ramos-Tejada MM; Arroyo FJ; Delgado AV
    Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion Stability and Electrorheological Properties of Polyaniline Particle Suspensions Stabilized by Poly(vinyl methyl ether).
    Chin BD; Park OO
    J Colloid Interface Sci; 2001 Feb; 234(2):344-350. PubMed ID: 11161520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydrophilicity of polyaniline particles on their electrorheology: steady flow and dynamic behaviour.
    Stěnička M; Pavlínek V; Sáha P; Blinova NV; Stejskal J; Quadrat O
    J Colloid Interface Sci; 2010 Jun; 346(1):236-40. PubMed ID: 20227708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.
    Saimoto Y; Satoh T; Konno M
    J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; Durán JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology.
    Liu YD; Fang FF; Choi HJ
    Langmuir; 2010 Aug; 26(15):12849-54. PubMed ID: 20593791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of particle size on shear behavior of amine-group-immobilized polyacrylonitrile dispersed suspension under electric field.
    Ko YG; Choi US; Chun YJ
    J Colloid Interface Sci; 2009 Jul; 335(2):183-8. PubMed ID: 19409572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric permittivity of concentrated suspensions of elongated goethite particles.
    Rica RA; Jiménez ML; Delgado AV
    J Colloid Interface Sci; 2010 Mar; 343(2):564-73. PubMed ID: 20044095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rheology of Bimodal Mixtures of Colloidal Particles with Long-Range, Soft Repulsions.
    Hunt WJ; Zukoski CF
    J Colloid Interface Sci; 1999 Feb; 210(2):343-351. PubMed ID: 9929421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant Effect on the Stability and Electrorheological Properties of Polyaniline Particle Suspension.
    Lee HJ; Doo Chin B ; Yang SM; Park OO
    J Colloid Interface Sci; 1998 Oct; 206(2):424-438. PubMed ID: 9756655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrorheological Response and Structure Growth of Colloidal Silica Suspensions.
    Satoh T; Ashitaka T; Orihara S; Saimoto Y; Konno M
    J Colloid Interface Sci; 2001 Feb; 234(1):19-23. PubMed ID: 11161485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and electrorheological behavior of sterically stabilized polypyrrole-silica-methylcellulose nanocomposite suspension.
    Yoon DJ; Kim YD
    J Colloid Interface Sci; 2006 Nov; 303(2):573-8. PubMed ID: 16919288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete dipole moments and enhanced electro-rheological properties of dumbbell-shaped, non-spherical particles.
    Shin K; Lee S; Kim JJ; Suh KD
    Macromol Rapid Commun; 2010 Nov; 31(22):1987-91. PubMed ID: 21567623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites.
    Genovese DB
    Adv Colloid Interface Sci; 2012; 171-172():1-16. PubMed ID: 22304831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.