These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 22365847)
1. Permeability analysis of scaffolds for bone tissue engineering. Dias MR; Fernandes PR; Guedes JM; Hollister SJ J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847 [TBL] [Abstract][Full Text] [Related]
2. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520 [TBL] [Abstract][Full Text] [Related]
3. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis. Garzón-Alvarado DA; Velasco MA; Narváez-Tovar CA Comput Biol Med; 2012 Feb; 42(2):147-55. PubMed ID: 22136697 [TBL] [Abstract][Full Text] [Related]
4. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
6. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084 [TBL] [Abstract][Full Text] [Related]
7. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering. Wu C; Ramaswamy Y; Zreiqat H Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260 [TBL] [Abstract][Full Text] [Related]
8. Optimization of scaffold design for bone tissue engineering: A computational and experimental study. Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449 [TBL] [Abstract][Full Text] [Related]
9. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants. Li JP; de Wijn JR; van Blitterswijk CA; de Groot K J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798 [TBL] [Abstract][Full Text] [Related]
11. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Adachi T; Osako Y; Tanaka M; Hojo M; Hollister SJ Biomaterials; 2006 Jul; 27(21):3964-72. PubMed ID: 16584771 [TBL] [Abstract][Full Text] [Related]
12. Assessment of scaffold porosity: the new route of micro-CT. Bertoldi S; Farè S; Tanzi MC J Appl Biomater Biomech; 2011; 9(3):165-75. PubMed ID: 22139756 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
14. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. Lin CY; Kikuchi N; Hollister SJ J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991 [TBL] [Abstract][Full Text] [Related]
15. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. O'Brien FJ; Harley BA; Waller MA; Yannas IV; Gibson LJ; Prendergast PJ Technol Health Care; 2007; 15(1):3-17. PubMed ID: 17264409 [TBL] [Abstract][Full Text] [Related]
17. A mathematical model for bone tissue regeneration inside a specific type of scaffold. Sanz-Herrera JA; Garcia-Aznar JM; Doblare M Biomech Model Mechanobiol; 2008 Oct; 7(5):355-66. PubMed ID: 17530310 [TBL] [Abstract][Full Text] [Related]
18. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
19. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930 [TBL] [Abstract][Full Text] [Related]
20. Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Tan L; Gong M; Zheng F; Zhang B; Yang K Biomed Mater; 2009 Feb; 4(1):015016. PubMed ID: 19141874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]