BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22365847)

  • 1. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis.
    Garzón-Alvarado DA; Velasco MA; Narváez-Tovar CA
    Comput Biol Med; 2012 Feb; 42(2):147-55. PubMed ID: 22136697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration.
    Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC
    Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C; Ramaswamy Y; Zreiqat H
    Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration.
    Adachi T; Osako Y; Tanaka M; Hojo M; Hollister SJ
    Biomaterials; 2006 Jul; 27(21):3964-72. PubMed ID: 16584771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of scaffold porosity: the new route of micro-CT.
    Bertoldi S; Farè S; Tanzi MC
    J Appl Biomater Biomech; 2011; 9(3):165-75. PubMed ID: 22139756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering.
    O'Brien FJ; Harley BA; Waller MA; Yannas IV; Gibson LJ; Prendergast PJ
    Technol Health Care; 2007; 15(1):3-17. PubMed ID: 17264409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous scaffold design for tissue engineering.
    Hollister SJ
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for bone tissue regeneration inside a specific type of scaffold.
    Sanz-Herrera JA; Garcia-Aznar JM; Doblare M
    Biomech Model Mechanobiol; 2008 Oct; 7(5):355-66. PubMed ID: 17530310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.
    Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J
    Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds.
    Tan L; Gong M; Zheng F; Zhang B; Yang K
    Biomed Mater; 2009 Feb; 4(1):015016. PubMed ID: 19141874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.