BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 22366268)

  • 21. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration.
    Tournier BB; Birkenstock J; Pévet P; Vuillez P
    Neuroscience; 2009 Apr; 160(1):240-7. PubMed ID: 19409208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.
    Feillet CA; Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2008 Dec; 28(12):2451-8. PubMed ID: 19087173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suprachiasmatic nuclei influence torpor and circadian temperature rhythms in hamsters.
    Ruby NF; Ibuka N; Barnes BM; Zucker I
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R210-5. PubMed ID: 2750960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute light exposure suppresses circadian rhythms in clock gene expression.
    Grone BP; Chang D; Bourgin P; Cao V; Fernald RD; Heller HC; Ruby NF
    J Biol Rhythms; 2011 Feb; 26(1):78-81. PubMed ID: 21252368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Daily torpor alters multiple gene expression in the suprachiasmatic nucleus and pineal gland of the Djungarian hamster (Phodopus sungorus).
    Herwig A; Revel F; Saboureau M; Pévet P; Steinlechner S
    Chronobiol Int; 2006; 23(1-2):269-76. PubMed ID: 16687300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The suprachiasmatic nuclei: two circadian clocks?
    Pickard GE; Turek FW
    Brain Res; 1983 Jun; 268(2):201-10. PubMed ID: 6347338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian properties of anticipatory activity to restricted water access in suprachiasmatic-ablated hamsters.
    Mistlberger RE
    Am J Physiol; 1993 Jan; 264(1 Pt 2):R22-9. PubMed ID: 8430882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial memory and long-term object recognition are impaired by circadian arrhythmia and restored by the GABAAAntagonist pentylenetetrazole.
    Ruby NF; Fernandez F; Garrett A; Klima J; Zhang P; Sapolsky R; Heller HC
    PLoS One; 2013; 8(8):e72433. PubMed ID: 24009680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Memory for time of day (time memory) is encoded by a circadian oscillator and is distinct from other context memories.
    Ralph MR; Sam K; Rawashdeh OA; Cain SW; Ko CH
    Chronobiol Int; 2013 May; 30(4):540-7. PubMed ID: 23428333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suprachiasmatic nucleus lesions abolish and fetal grafts restore circadian gnawing rhythms in hamsters.
    Le Sauter J; Silver R
    Restor Neurol Neurosci; 1994 Jan; 6(2):135-43. PubMed ID: 21551740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circadian locomotor rhythms in aged hamsters following suprachiasmatic transplant.
    Hurd MW; Zimmer KA; Lehman MN; Ralph MR
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R958-68. PubMed ID: 7503323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters.
    Refinetti R; Kaufman CM; Menaker M
    J Comp Physiol A; 1994 Aug; 175(2):223-32. PubMed ID: 8071897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diurnal variation in performance of free-operant avoidance behavior of rats.
    Ghiselli WB; Patton RA
    Psychol Rep; 1976 Feb; 38(1):83-90. PubMed ID: 943115
    [No Abstract]   [Full Text] [Related]  

  • 35. Individual recognition of social rank and social memory performance depends on a functional circadian system.
    Müller L; Weinert D
    Behav Processes; 2016 Nov; 132():85-93. PubMed ID: 27744087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hippocampal-dependent learning requires a functional circadian system.
    Ruby NF; Hwang CE; Wessells C; Fernandez F; Zhang P; Sapolsky R; Heller HC
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15593-8. PubMed ID: 18832172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of suprachiasmatic lesions on temperature regulation in the golden hamster.
    Refinetti R
    Brain Res Bull; 1995; 36(1):81-4. PubMed ID: 7882054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian rhythms, aging and memory.
    Antoniadis EA; Ko CH; Ralph MR; McDonald RJ
    Behav Brain Res; 2000 Sep; 114(1-2):221-33. PubMed ID: 10996063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional Interactions Between Sleep and Circadian Rhythms in Learning and Learning Disabilities.
    Heller HC; Ruby NF
    Handb Exp Pharmacol; 2019; 253():425-440. PubMed ID: 30443786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian rhythm. Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing.
    Fernandez F; Lu D; Ha P; Costacurta P; Chavez R; Heller HC; Ruby NF
    Science; 2014 Nov; 346(6211):854-7. PubMed ID: 25395537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.