These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 22366871)
1. Nanostructured Bi(2-x)Cu(x)S3 bulk materials with enhanced thermoelectric performance. Ge ZH; Zhang BP; Liu Y; Li JF Phys Chem Chem Phys; 2012 Apr; 14(13):4475-81. PubMed ID: 22366871 [TBL] [Abstract][Full Text] [Related]
2. Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. Zhou M; Li JF; Kita T J Am Chem Soc; 2008 Apr; 130(13):4527-32. PubMed ID: 18327945 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and transport property of Cu(1.8)S as a promising thermoelectric compound. Ge ZH; Zhang BP; Chen YX; Yu ZX; Liu Y; Li JF Chem Commun (Camb); 2011 Dec; 47(47):12697-9. PubMed ID: 22048217 [TBL] [Abstract][Full Text] [Related]
4. Facile general route toward tunable Magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites. Portehault D; Maneeratana V; Candolfi C; Oeschler N; Veremchuk I; Grin Y; Sanchez C; Antonietti M ACS Nano; 2011 Nov; 5(11):9052-61. PubMed ID: 21978378 [TBL] [Abstract][Full Text] [Related]
5. The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics. Li F; Li JF; Li JH; Yao FZ Phys Chem Chem Phys; 2012 Sep; 14(35):12213-20. PubMed ID: 22858990 [TBL] [Abstract][Full Text] [Related]
6. Enhanced thermoelectric performance of rough silicon nanowires. Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582 [TBL] [Abstract][Full Text] [Related]
7. Thermoelectric properties of Yb(x)Eu(1-x)Cd2Sb2. Zhang H; Fang L; Tang MB; Man ZY; Chen HH; Yang XX; Baitinger M; Grin Y; Zhao JT J Chem Phys; 2010 Nov; 133(19):194701. PubMed ID: 21090867 [TBL] [Abstract][Full Text] [Related]
8. Glassy thermal conductivity in the two-phase Cu(x)Ag(3-x)SbSeTe(2) alloy and high temperature thermoelectric behavior. Drymiotis F; Drye T; Rhodes D; Zhang Q; Lashey JC; Wang Y; Cawthorne S; Ma B; Lindsey S; Tritt T J Phys Condens Matter; 2010 Jan; 22(3):035801. PubMed ID: 21386296 [TBL] [Abstract][Full Text] [Related]
9. Enhancing thermoelectric performance of Cu Zhu YB; Zhang BP; Liu Y Phys Chem Chem Phys; 2017 Oct; 19(40):27664-27669. PubMed ID: 28983540 [TBL] [Abstract][Full Text] [Related]
10. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. Liu Y; Zhao LD; Liu Y; Lan J; Xu W; Li F; Zhang BP; Berardan D; Dragoe N; Lin YH; Nan CW; Li JF; Zhu H J Am Chem Soc; 2011 Dec; 133(50):20112-5. PubMed ID: 22084827 [TBL] [Abstract][Full Text] [Related]
11. Highly Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Compounds by Carrier Modulation and Microstructure Adjustment. Liang H; Lou Q; Zhu YK; Guo J; Wang ZY; Gu SW; Yu W; Feng J; He J; Ge ZH ACS Appl Mater Interfaces; 2021 Sep; 13(38):45589-45599. PubMed ID: 34542277 [TBL] [Abstract][Full Text] [Related]
13. Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. Androulakis J; Lin CH; Kong HJ; Uher C; Wu CI; Hogan T; Cook BA; Caillat T; Paraskevopoulos KM; Kanatzidis MG J Am Chem Soc; 2007 Aug; 129(31):9780-8. PubMed ID: 17629270 [TBL] [Abstract][Full Text] [Related]
14. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties. Asfandiyar ; Wei TR; Li Z; Sun FH; Pan Y; Wu CF; Farooq MU; Tang H; Li F; Li B; Li JF Sci Rep; 2017 Feb; 7():43262. PubMed ID: 28240324 [TBL] [Abstract][Full Text] [Related]
15. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907 [TBL] [Abstract][Full Text] [Related]
16. Highly Enhanced Thermoelectric Properties of Bi/Bi Ge ZH; Qin P; He D; Chong X; Feng D; Ji YH; Feng J; He J ACS Appl Mater Interfaces; 2017 Feb; 9(5):4828-4834. PubMed ID: 28084071 [TBL] [Abstract][Full Text] [Related]
17. Thermoelectric properties of Eu(Zn(1-x)Cd(x))2Sb2. Zhang H; Baitinger M; Tang MB; Man ZY; Chen HH; Yang XX; Liu Y; Chen L; Grin Y; Zhao JT Dalton Trans; 2010 Jan; 39(4):1101-4. PubMed ID: 20066197 [TBL] [Abstract][Full Text] [Related]
18. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. Zhao LD; Lo SH; He J; Li H; Biswas K; Androulakis J; Wu CI; Hogan TP; Chung DY; Dravid VP; Kanatzidis MG J Am Chem Soc; 2011 Dec; 133(50):20476-87. PubMed ID: 22126301 [TBL] [Abstract][Full Text] [Related]
19. Dual Vacancies: An Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO. Li Z; Xiao C; Fan S; Deng Y; Zhang W; Ye B; Xie Y J Am Chem Soc; 2015 May; 137(20):6587-93. PubMed ID: 25927811 [TBL] [Abstract][Full Text] [Related]
20. High Thermoelectric Performance of Bi Zhang D; Wang J; Zhang L; Lei J; Ma Z; Wang C; Guan W; Cheng Z; Wang Y ACS Appl Mater Interfaces; 2019 Oct; 11(40):36658-36665. PubMed ID: 31483591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]