BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22367173)

  • 1. Age-related changes in Cngb1-X1 knockout mice: prolonged cone survival.
    Zhang Y; Rubin GR; Fineberg N; Huisingh C; McGwin G; Pittler SJ; Kraft TW
    Doc Ophthalmol; 2012 Jun; 124(3):163-75. PubMed ID: 22367173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration.
    Xu J; Morris LM; Michalakis S; Biel M; Fliesler SJ; Sherry DM; Ding XQ
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1117-29. PubMed ID: 22247469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electroretinogram of the rhodopsin knockout mouse.
    Toda K; Bush RA; Humphries P; Sieving PA
    Vis Neurosci; 1999; 16(2):391-8. PubMed ID: 10367972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1.
    Hüttl S; Michalakis S; Seeliger M; Luo DG; Acar N; Geiger H; Hudl K; Mader R; Haverkamp S; Moser M; Pfeifer A; Gerstner A; Yau KW; Biel M
    J Neurosci; 2005 Jan; 25(1):130-8. PubMed ID: 15634774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flicker assessment of rod and cone function in a model of retinal degeneration.
    Rubin GR; Kraft TW
    Doc Ophthalmol; 2007 Nov; 115(3):165-72. PubMed ID: 17674067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varying the GARP2-to-RDS Ratio Leads to Defects in Rim Formation and Rod and Cone Function.
    Chakraborty D; Conley SM; DeRamus ML; Pittler SJ; Naash MI
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8187-98. PubMed ID: 26720471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust cone-mediated signaling persists late into rod photoreceptor degeneration.
    Scalabrino ML; Thapa M; Chew LA; Zhang E; Xu J; Sampath AP; Chen J; Field GD
    Elife; 2022 Aug; 11():. PubMed ID: 36040015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions.
    Bush RA; Tanikawa A; Zeng Y; Sieving PA
    Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3680-3688. PubMed ID: 31469895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockout of GARPs and the β-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity.
    Zhang Y; Molday LL; Molday RS; Sarfare SS; Woodruff ML; Fain GL; Kraft TW; Pittler SJ
    J Cell Sci; 2009 Apr; 122(Pt 8):1192-200. PubMed ID: 19339551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats.
    Pinilla I; Lund RD; Sauvé Y
    Vision Res; 2004; 44(21):2467-74. PubMed ID: 15358082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations.
    Collison FT; Park JC; Fishman GA; Stone EM; McAnany JJ
    Doc Ophthalmol; 2016 Jun; 132(3):157-66. PubMed ID: 27033713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function.
    Khan NW; Wissinger B; Kohl S; Sieving PA
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3864-71. PubMed ID: 17652762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice.
    Gresh J; Goletz PW; Crouch RK; Rohrer B
    Vis Neurosci; 2003; 20(2):211-20. PubMed ID: 12916741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone-Driven Retinal Responses Are Shaped by Rod But Not Cone HCN1.
    Lankford CK; Umino Y; Poria D; Kefalov V; Solessio E; Baker SA
    J Neurosci; 2022 May; 42(21):4231-4249. PubMed ID: 35437278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic dissection of rod and cone pathways in the dark-adapted mouse retina.
    Abd-El-Barr MM; Pennesi ME; Saszik SM; Barrow AJ; Lem J; Bramblett DE; Paul DL; Frishman LJ; Wu SM
    J Neurophysiol; 2009 Sep; 102(3):1945-55. PubMed ID: 19587322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Retinal Function in the Absence of Na(v)1.6.
    Smith BJ; Côté PD
    PLoS One; 2012; 7(2):e31476. PubMed ID: 22355369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal Responses to Visual Stimuli in Interphotoreceptor Retinoid Binding-Protein Knock-Out Mice.
    DeRamus ML; Jasien JV; Eppstein JM; Koala P; Kraft TW
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.