BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22367173)

  • 21. Early-onset, slow progression of cone photoreceptor dysfunction and degeneration in CNG channel subunit CNGB3 deficiency.
    Xu J; Morris L; Fliesler SJ; Sherry DM; Ding XQ
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3557-66. PubMed ID: 21273547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse.
    Lei B
    PLoS One; 2012; 7(8):e43856. PubMed ID: 22937111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoreceptor and postreceptor responses in congenital stationary night blindness.
    Raghuram A; Hansen RM; Moskowitz A; Fulton AB
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4648-58. PubMed ID: 23761088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GARP2 accelerates retinal degeneration in rod cGMP-gated cation channel β-subunit knockout mice.
    DeRamus ML; Stacks DA; Zhang Y; Huisingh CE; McGwin G; Pittler SJ
    Sci Rep; 2017 Feb; 7():42545. PubMed ID: 28198469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions.
    Cao D; Zele AJ; Pokorny J
    Vis Neurosci; 2006; 23(3-4):531-7. PubMed ID: 16961991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia.
    Schön C; Asteriti S; Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Herms J; Seeliger MW; Cangiano L; Biel M; Michalakis S
    Hum Mol Genet; 2016 Mar; 25(6):1165-75. PubMed ID: 26740549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transretinal ERG recordings from mouse retina: rod and cone photoresponses.
    Kolesnikov AV; Kefalov VJ
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ERG Responses in Mice with Deletion of the Synaptic Ribbon Component RIBEYE.
    Fairless R; Williams SK; Katiyar R; Maxeiner S; Schmitz F; Diem R
    Invest Ophthalmol Vis Sci; 2020 May; 61(5):37. PubMed ID: 32437548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of cone function without degeneration in a novel Gnat2 knock-out mouse.
    Ronning KE; Allina GP; Miller EB; Zawadzki RJ; Pugh EN; Herrmann R; Burns ME
    Exp Eye Res; 2018 Jun; 171():111-118. PubMed ID: 29518352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ERG and Behavioral CFF in Light-Damaged Albino Rats.
    Rubin GR; Wen Y; Loop MS; Kraft TW
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35456959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of RDS and Rhodopsin in Cngb1-Related Retinal Degeneration.
    Chakraborty D; Conley SM; Pittler SJ; Naash MI
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):787-97. PubMed ID: 26934134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rod and cone contributions to horizontal cell light responses in the mouse retina.
    Trümpler J; Dedek K; Schubert T; de Sevilla Müller LP; Seeliger M; Humphries P; Biel M; Weiler R
    J Neurosci; 2008 Jul; 28(27):6818-25. PubMed ID: 18596157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The contribution of cone responses to rat electroretinograms.
    Nixon PJ; Bui BV; Armitage JA; Vingrys AJ
    Clin Exp Ophthalmol; 2001 Jun; 29(3):193-6. PubMed ID: 11446467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemogenetic Activation of ipRGCs Drives Changes in Dark-Adapted (Scotopic) Electroretinogram.
    Milosavljevic N; Allen AE; Cehajic-Kapetanovic J; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6305-6312. PubMed ID: 27893096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of Rod and Cone Function in 6.5-Year-Old Children Born Extremely Preterm.
    Molnar AEC; Andréasson SO; Larsson EKB; Åkerblom HM; Holmström GE
    JAMA Ophthalmol; 2017 Aug; 135(8):854-861. PubMed ID: 28662245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A critical role of CaBP4 in the cone synapse.
    Maeda T; Lem J; Palczewski K; Haeseleer F
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4320-7. PubMed ID: 16249514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rod and cone a-waves in three cases of Bietti crystalline chorioretinal dystrophy.
    Usui T; Tanimoto N; Takagi M; Hasegawa S; Abe H
    Am J Ophthalmol; 2001 Sep; 132(3):395-402. PubMed ID: 11530054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.