BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22367413)

  • 1. A multi-drug delivery system with sequential release using titania nanotube arrays.
    Aw MS; Addai-Mensah J; Losic D
    Chem Commun (Camb); 2012 Apr; 48(27):3348-50. PubMed ID: 22367413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer micelles for delayed release of therapeutics from drug-releasing surfaces with nanotubular structures.
    Sinn Aw M; Addai-Mensah J; Losic D
    Macromol Biosci; 2012 Aug; 12(8):1048-52. PubMed ID: 22821826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.
    Gulati K; Ramakrishnan S; Aw MS; Atkins GJ; Findlay DM; Losic D
    Acta Biomater; 2012 Jan; 8(1):449-56. PubMed ID: 21930254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.
    Aw MS; Losic D
    Int J Pharm; 2013 Feb; 443(1-2):154-62. PubMed ID: 23313837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants.
    Bariana M; Aw MS; Moore E; Voelcker NH; Losic D
    Nanomedicine (Lond); 2014; 9(8):1263-75. PubMed ID: 24359550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes.
    Feng W; Geng Z; Li Z; Cui Z; Zhu S; Liang Y; Liu Y; Wang R; Yang X
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():105-12. PubMed ID: 26952403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.
    Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D
    Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solidified mPEG-PDLLA micelles as a novel oral delivery system of indomethacin.
    Ammar O; Shen Y; Ping QN; Tu JS
    Yao Xue Xue Bao; 2011 Aug; 46(8):997-1003. PubMed ID: 22007527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning drug loading and release properties of diatom silica microparticles by surface modifications.
    Bariana M; Aw MS; Kurkuri M; Losic D
    Int J Pharm; 2013 Feb; 443(1-2):230-41. PubMed ID: 23287775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes.
    Popat KC; Eltgroth M; Latempa TJ; Grimes CA; Desai TA
    Biomaterials; 2007 Nov; 28(32):4880-8. PubMed ID: 17697708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization.
    Sant VP; Smith D; Leroux JC
    J Control Release; 2004 Jun; 97(2):301-12. PubMed ID: 15196757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid-polyaspartamide micelles for pulmonary delivery of corticosteroids.
    Craparo EF; Teresi G; Bondi' ML; Licciardi M; Cavallaro G
    Int J Pharm; 2011 Mar; 406(1-2):135-44. PubMed ID: 21185363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.
    Lukyanov AN; Torchilin VP
    Adv Drug Deliv Rev; 2004 May; 56(9):1273-89. PubMed ID: 15109769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites.
    Xia W; Chang J; Lin J; Zhu J
    Eur J Pharm Biopharm; 2008 Jun; 69(2):546-52. PubMed ID: 18248801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotubes for transdermal drug delivery.
    Degim IT; Burgess DJ; Papadimitrakopoulos F
    J Microencapsul; 2010; 27(8):669-81. PubMed ID: 20690793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel reduction-sensitive micelles for triggered intracellular drug release.
    Sun P; Zhou D; Gan Z
    J Control Release; 2011 Nov; 152 Suppl 1():e85-7. PubMed ID: 22195946
    [No Abstract]   [Full Text] [Related]  

  • 17. Amphotericin B-loaded poly(ethylene glycol)-poly(lactide) micelles: preparation, freeze-drying, and in vitro release.
    Yang ZL; Li XR; Yang KW; Liu Y
    J Biomed Mater Res A; 2008 May; 85(2):539-46. PubMed ID: 17729259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: Preparation, in vitro and in vivo evaluation.
    Zhang JX; Li XJ; Qiu LY; Li XH; Yan MQ; Yi Jin ; Zhu KJ
    J Control Release; 2006 Dec; 116(3):322-9. PubMed ID: 17109985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs.
    Kim JY; Kim S; Pinal R; Park K
    J Control Release; 2011 May; 152(1):13-20. PubMed ID: 21352878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doubly hydrophilic multiarm hyperbranched polymers with acylhydrazone linkages as acid-sensitive drug carriers.
    Wang Q; Zhu L; Li G; Tu C; Pang Y; Jin C; Zhu B; Zhu X; Liu Y
    Macromol Biosci; 2011 Nov; 11(11):1553-62. PubMed ID: 21818857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.