BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 22367531)

  • 1. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia.
    Arnet U; van Drongelen S; Scheel-Sailer A; van der Woude LH; Veeger DH
    J Rehabil Med; 2012 Mar; 44(3):222-8. PubMed ID: 22367531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shoulder load during handcycling at different incline and speed conditions.
    Arnet U; van Drongelen S; van der Woude LH; Veeger DH
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):1-6. PubMed ID: 21831491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of crank position and backrest inclination on shoulder load and mechanical efficiency during handcycling.
    Arnet U; van Drongelen S; Schlüssel M; Lay V; van der Woude LH; Veeger HE
    Scand J Med Sci Sports; 2014 Apr; 24(2):386-94. PubMed ID: 22989023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force application during handcycling and handrim wheelchair propulsion: an initial comparison.
    Arnet U; van Drongelen S; Veeger DH; van der Woude L HV
    J Appl Biomech; 2013 Dec; 29(6):687-95. PubMed ID: 23343659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submaximal physical strain and peak performance in handcycling versus handrim wheelchair propulsion.
    Dallmeijer AJ; Zentgraaff ID; Zijp NI; van der Woude LH
    Spinal Cord; 2004 Feb; 42(2):91-8. PubMed ID: 14765141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia.
    Haubert LL; Mulroy SJ; Requejo PS; Maneekobkunwong S; Gronley JK; Rankin JW; Rodriguez D; Hong K
    J Spinal Cord Med; 2020 Sep; 43(5):594-606. PubMed ID: 30768378
    [No Abstract]   [Full Text] [Related]  

  • 12. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoulder joint kinetics and pathology in manual wheelchair users.
    Mercer JL; Boninger M; Koontz A; Ren D; Dyson-Hudson T; Cooper R
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):781-9. PubMed ID: 16808992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of functional electrical stimulation on trunk musculature during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Cooper RA; Boninger ML
    Neurorehabil Neural Repair; 2009 Sep; 23(7):717-25. PubMed ID: 19261768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia.
    Requejo PS; Mulroy SJ; Ruparel P; Hatchett PE; Haubert LL; Eberly VJ; Gronley JK
    Top Spinal Cord Inj Rehabil; 2015; 21(4):313-24. PubMed ID: 26689696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.