These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22368174)

  • 1. Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes.
    Morino K; Petersen KF; Sono S; Choi CS; Samuel VT; Lin A; Gallo A; Zhao H; Kashiwagi A; Goldberg IJ; Wang H; Eckel RH; Maegawa H; Shulman GI
    Diabetes; 2012 Apr; 61(4):877-87. PubMed ID: 22368174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin resistance and type 2 diabetes.
    Taylor R
    Diabetes; 2012 Apr; 61(4):778-9. PubMed ID: 22442298
    [No Abstract]   [Full Text] [Related]  

  • 3. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.
    Robciuc MR; Skrobuk P; Anisimov A; Olkkonen VM; Alitalo K; Eckel RH; Koistinen HA; Jauhiainen M; Ehnholm C
    PLoS One; 2012; 7(10):e46212. PubMed ID: 23056264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.
    Coll T; Alvarez-Guardia D; Barroso E; Gómez-Foix AM; Palomer X; Laguna JC; Vázquez-Carrera M
    Endocrinology; 2010 Apr; 151(4):1560-9. PubMed ID: 20185762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents.
    Petersen KF; Dufour S; Shulman GI
    PLoS Med; 2005 Sep; 2(9):e233. PubMed ID: 16089501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of linseed on intramuscular fat content and adipogenesis related genes in skeletal muscle of pigs.
    Luo HF; Wei HK; Huang FR; Zhou Z; Jiang SW; Peng J
    Lipids; 2009 Nov; 44(11):999-1010. PubMed ID: 19798528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.
    Morino K; Petersen KF; Dufour S; Befroy D; Frattini J; Shatzkes N; Neschen S; White MF; Bilz S; Sono S; Pypaert M; Shulman GI
    J Clin Invest; 2005 Dec; 115(12):3587-93. PubMed ID: 16284649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of AMPK and PPARγ1 in exercise-induced lipoprotein lipase in skeletal muscle.
    Sasaki T; Nakata R; Inoue H; Shimizu M; Inoue J; Sato R
    Am J Physiol Endocrinol Metab; 2014 May; 306(9):E1085-92. PubMed ID: 24644240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus.
    Mensink M; Hesselink MK; Russell AP; Schaart G; Sels JP; Schrauwen P
    Int J Obes (Lond); 2007 Aug; 31(8):1302-10. PubMed ID: 17310221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional metabolic inflexibility in skeletal muscle among individuals with increasing insulin resistance.
    Jans A; Sparks LM; van Hees AM; Gjelstad IM; Tierney AC; Risérus U; Drevon CA; Roche HM; Schrauwen P; Blaak EE
    Obesity (Silver Spring); 2011 Nov; 19(11):2158-66. PubMed ID: 21701566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-body insulin resistance and energy expenditure indices, serum lipids, and skeletal muscle metabolome in a state of lipoprotein lipase overexpression.
    Nishida Y; Nishijima K; Yamada Y; Tanaka H; Matsumoto A; Fan J; Uda Y; Tomatsu H; Yamamoto H; Kami K; Kitajima S; Tanaka K
    Metabolomics; 2021 Feb; 17(3):26. PubMed ID: 33594546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.
    Petersen KF; Dufour S; Befroy D; Garcia R; Shulman GI
    N Engl J Med; 2004 Feb; 350(7):664-71. PubMed ID: 14960743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of macrophage peroxisome proliferator-activated receptor expression by glucose : role of peroxisome proliferator-activated receptors in lipoprotein lipase gene expression.
    Sartippour MR; Renier G
    Arterioscler Thromb Vasc Biol; 2000 Jan; 20(1):104-10. PubMed ID: 10634806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of muraglitazar on adiponectin signalling, mitochondrial function and fat oxidation genes in human skeletal muscle in vivo.
    Coletta DK; Fernandez M; Cersosimo E; Gastaldelli A; Musi N; DeFronzo RA
    Diabet Med; 2015 May; 32(5):657-64. PubMed ID: 25484175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of genes involved in lipid metabolism correlate with peroxisome proliferator-activated receptor gamma expression in human skeletal muscle.
    Lapsys NM; Kriketos AD; Lim-Fraser M; Poynten AM; Lowy A; Furler SM; Chisholm DJ; Cooney GJ
    J Clin Endocrinol Metab; 2000 Nov; 85(11):4293-7. PubMed ID: 11095470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray analysis suggests that burn injury results in mitochondrial dysfunction in human skeletal muscle.
    Tzika AA; Mintzopoulos D; Mindrinos M; Zhang J; Rahme LG; Tompkins RG
    Int J Mol Med; 2009 Sep; 24(3):387-92. PubMed ID: 19639232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-gamma.
    Kageyama H; Hirano T; Okada K; Ebara T; Kageyama A; Murakami T; Shioda S; Adachi M
    Biochem Biophys Res Commun; 2003 May; 305(1):22-7. PubMed ID: 12732191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans.
    Staiger H; Haas C; Machann J; Werner R; Weisser M; Schick F; Machicao F; Stefan N; Fritsche A; Häring HU
    Diabetes; 2009 Mar; 58(3):579-89. PubMed ID: 19074989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients.
    Befroy DE; Petersen KF; Dufour S; Mason GF; de Graaf RA; Rothman DL; Shulman GI
    Diabetes; 2007 May; 56(5):1376-81. PubMed ID: 17287462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired mitochondrial oxidative phosphorylation in multiple insulin-sensitive tissues of humans with type 2 diabetes mellitus.
    Wang M; Wang XC; Zhang ZY; Mou B; Hu RM
    J Int Med Res; 2010; 38(3):769-81. PubMed ID: 20819414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.