These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22368495)

  • 1. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions.
    Lee CY; Lee YM; Lee SJ
    Sensors (Basel); 2012; 12(1):768-83. PubMed ID: 22368495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.
    Lee CY; Fan WY; Hsieh WJ
    Sensors (Basel); 2010; 10(7):6395-405. PubMed ID: 22163556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.
    Zamora H; Plaza J; Cañizares P; Lobato J; Rodrigo MA
    ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.
    Lee CY; Chan PC; Lee CJ
    Sensors (Basel); 2010; 10(12):11605-17. PubMed ID: 22163545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.
    Lee CY; Fan WY; Chang CP
    Sensors (Basel); 2011; 11(2):1418-32. PubMed ID: 22319361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.
    Li W; Bonakdarpour A; Gyenge E; Wilkinson DP
    ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.
    Jung CY; Kim TH; Yi SC
    ChemSusChem; 2014 Feb; 7(2):466-73. PubMed ID: 24436310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.
    Tsushima S; Teranishi K; Nishida K; Hirai S
    Magn Reson Imaging; 2005 Feb; 23(2):255-8. PubMed ID: 15833622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.
    Xiao Y; Xiang Y; Xiu R; Lu S
    Carbohydr Polym; 2013 Oct; 98(1):233-40. PubMed ID: 23987340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automotive Subzero Cold-Start Quasi-Adiabatic Proton Exchange Membrane Fuel Cell Fixture: Design and Validation.
    Pistono AO; Rice CA
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.
    Hou H; Di Vona ML; Knauth P
    ChemSusChem; 2011 Nov; 4(11):1526-36. PubMed ID: 22006846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).
    Suresh PV; Jayanti S
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20120-20130. PubMed ID: 27074933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.
    Chen Y; Bellini M; Bevilacqua M; Fornasiero P; Lavacchi A; Miller HA; Wang L; Vizza F
    ChemSusChem; 2015 Feb; 8(3):524-33. PubMed ID: 25504942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.
    Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.
    Ishizaki S; Fujiki I; Sano D; Okabe S
    Environ Sci Technol; 2014 Oct; 48(19):11204-10. PubMed ID: 25181008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.
    Nawn G; Pace G; Lavina S; Vezzù K; Negro E; Bertasi F; Polizzi S; Di Noto V
    ChemSusChem; 2015 Apr; 8(8):1381-93. PubMed ID: 25801848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly.
    Min B; Poulsen FW; Thygesen A; Angelidaki I
    Bioresour Technol; 2012 Aug; 118():412-7. PubMed ID: 22705964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells.
    Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure.
    Moghaddam S; Pengwang E; Jiang YB; Garcia AR; Burnett DJ; Brinker CJ; Masel RI; Shannon MA
    Nat Nanotechnol; 2010 Mar; 5(3):230-6. PubMed ID: 20173756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.