BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 22369136)

  • 1. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease.
    Garcia-Garcia A; Zavala-Flores L; Rodriguez-Rocha H; Franco R
    Antioxid Redox Signal; 2012 Dec; 17(12):1764-84. PubMed ID: 22369136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial thiols in the regulation of cell death pathways.
    Yin F; Sancheti H; Cadenas E
    Antioxid Redox Signal; 2012 Dec; 17(12):1714-27. PubMed ID: 22530585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease.
    Ray A; Kambali M; Ravindranath V
    Antioxid Redox Signal; 2016 Aug; 25(5):252-67. PubMed ID: 27121974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications.
    Murphy MP
    Antioxid Redox Signal; 2012 Mar; 16(6):476-95. PubMed ID: 21954972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial Dysfunction Combined with High Calcium Load Leads to Impaired Antioxidant Defense Underlying the Selective Loss of Nigral Dopaminergic Neurons.
    Ricke KM; Paß T; Kimoloi S; Fährmann K; Jüngst C; Schauss A; Baris OR; Aradjanski M; Trifunovic A; Eriksson Faelker TM; Bergami M; Wiesner RJ
    J Neurosci; 2020 Feb; 40(9):1975-1986. PubMed ID: 32005765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferroptosis and cell death mechanisms in Parkinson's disease.
    Guiney SJ; Adlard PA; Bush AI; Finkelstein DI; Ayton S
    Neurochem Int; 2017 Mar; 104():34-48. PubMed ID: 28082232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MPTP activates ASK1-p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in parkinsonism mouse model.
    Ray A; Sehgal N; Karunakaran S; Rangarajan G; Ravindranath V
    Free Radic Biol Med; 2015 Oct; 87():312-25. PubMed ID: 26164633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death.
    Farzam A; Chohan K; Strmiskova M; Hewitt SJ; Park DS; Pezacki JP; Özcelik D
    Redox Biol; 2020 Jan; 28():101377. PubMed ID: 31760358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.
    Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW
    Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Death-Osis of Dopaminergic Neurons and the Role of Iron in Parkinson's Disease.
    Lima IS; Pêgo AC; Barros JT; Prada AR; Gozzelino R
    Antioxid Redox Signal; 2021 Aug; 35(6):453-473. PubMed ID: 33233941
    [No Abstract]   [Full Text] [Related]  

  • 14. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.
    Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.
    Anandhan A; Jacome MS; Lei S; Hernandez-Franco P; Pappa A; Panayiotidis MI; Powers R; Franco R
    Brain Res Bull; 2017 Jul; 133():12-30. PubMed ID: 28341600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of electroacupuncture intervention on levels of SOD, GSH, GSH-Px, MDA, and apoptosis of dopaminergic neurons in substantia Nigra in rats with Parkinson's disease].
    Li J; Wang LN; Xiao HL; Li X; Yang JJ
    Zhen Ci Yan Jiu; 2014 Jun; 39(3):185-91. PubMed ID: 25069193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione, iron and Parkinson's disease.
    Bharath S; Hsu M; Kaur D; Rajagopalan S; Andersen JK
    Biochem Pharmacol; 2002 Sep; 64(5-6):1037-48. PubMed ID: 12213603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Modulation of Mitochondrial Proteins in the Neurotoxicant Models of Parkinson's Disease.
    Sarkar A; Rasheed MSU; Singh MP
    Antioxid Redox Signal; 2023 Apr; 38(10-12):824-852. PubMed ID: 36401516
    [No Abstract]   [Full Text] [Related]  

  • 20. The glutathione system in Parkinson's disease and its progression.
    Bjørklund G; Peana M; Maes M; Dadar M; Severin B
    Neurosci Biobehav Rev; 2021 Jan; 120():470-478. PubMed ID: 33068556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.