BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 22369136)

  • 21. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacological Inhibition of PTEN Rescues Dopaminergic Neurons by Attenuating Apoptotic and Neuroinflammatory Signaling Events.
    Johnson AM; Jose S; Palakkott AR; Khan FB; Jayabalan N; Kizhakkayil J; AlNaqbi SAA; Scott MG; Ayoub MA; Gordon R; Saminathan H
    J Neuroimmune Pharmacol; 2023 Sep; 18(3):462-475. PubMed ID: 37589761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.
    Ren X; Zou L; Zhang X; Branco V; Wang J; Carvalho C; Holmgren A; Lu J
    Antioxid Redox Signal; 2017 Nov; 27(13):989-1010. PubMed ID: 28443683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox sensitivity of tyrosine hydroxylase activity and expression in dopaminergic dysfunction.
    Di Giovanni G; Pessia M; Di Maio R
    CNS Neurol Disord Drug Targets; 2012 Jun; 11(4):419-29. PubMed ID: 22483306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling.
    Tanaka LY; Oliveira PVS; Laurindo FRM
    Antioxid Redox Signal; 2020 Aug; 33(4):280-307. PubMed ID: 31910038
    [No Abstract]   [Full Text] [Related]  

  • 26. Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease.
    Gorelenkova Miller O; Mieyal JJ
    Antioxid Redox Signal; 2019 Apr; 30(10):1352-1368. PubMed ID: 29183158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of miR‑185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson's disease.
    Wen Z; Zhang J; Tang P; Tu N; Wang K; Wu G
    Mol Med Rep; 2018 Jan; 17(1):131-137. PubMed ID: 29115479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins.
    Kanagaraj N; Beiping H; Dheen ST; Tay SS
    Neuroscience; 2014 Jul; 272():167-79. PubMed ID: 24792712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forkhead Box O3a requires BAF57, a subunit of chromatin remodeler SWI/SNF complex for induction of p53 up-regulated modulator of apoptosis (Puma) in a model of Parkinson's disease.
    Sanphui P; Kumar Das A; Biswas SC
    J Neurochem; 2020 Sep; 154(5):547-561. PubMed ID: 31971251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutathione efflux and cell death.
    Franco R; Cidlowski JA
    Antioxid Redox Signal; 2012 Dec; 17(12):1694-713. PubMed ID: 22656858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.
    Sabens Liedhegner EA; Gao XH; Mieyal JJ
    Antioxid Redox Signal; 2012 Mar; 16(6):543-66. PubMed ID: 22066468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model.
    Wegrzynowicz M; Bar-On D; Calo' L; Anichtchik O; Iovino M; Xia J; Ryazanov S; Leonov A; Giese A; Dalley JW; Griesinger C; Ashery U; Spillantini MG
    Acta Neuropathol; 2019 Oct; 138(4):575-595. PubMed ID: 31165254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease.
    Jha N; Jurma O; Lalli G; Liu Y; Pettus EH; Greenamyre JT; Liu RM; Forman HJ; Andersen JK
    J Biol Chem; 2000 Aug; 275(34):26096-101. PubMed ID: 10846169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review).
    Liu XL; Wang YD; Yu XM; Li DW; Li GR
    Int J Mol Med; 2018 Feb; 41(2):615-623. PubMed ID: 29207041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs.
    Stöcker S; Van Laer K; Mijuskovic A; Dick TP
    Antioxid Redox Signal; 2018 Mar; 28(7):558-573. PubMed ID: 28587525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?
    Herrera A; Muñoz P; Steinbusch HWM; Segura-Aguilar J
    ACS Chem Neurosci; 2017 Apr; 8(4):702-711. PubMed ID: 28233992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pentraxin 3 secreted by human adipose-derived stem cells promotes dopaminergic neuron repair in Parkinson's disease via the inhibition of apoptosis.
    Lian C; Huang Q; Zhong X; He Z; Liu B; Zeng H; Xu N; Yang Z; Liao C; Fu Z; Guo H
    FASEB J; 2021 Jul; 35(7):e21748. PubMed ID: 34152016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PEP-1-GLRX1 Reduces Dopaminergic Neuronal Cell Loss by Modulating MAPK and Apoptosis Signaling in Parkinson's Disease.
    Choi YJ; Kim DW; Shin MJ; Yeo HJ; Yeo EJ; Lee LR; Song Y; Kim DS; Han KH; Park J; Lee KW; Park JK; Eum WS; Choi SY
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34206041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.
    Medeiros MS; Schumacher-Schuh A; Cardoso AM; Bochi GV; Baldissarelli J; Kegler A; Santana D; Chaves CM; Schetinger MR; Moresco RN; Rieder CR; Fighera MR
    PLoS One; 2016; 11(1):e0146129. PubMed ID: 26751079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutathione--a review on its role and significance in Parkinson's disease.
    Martin HL; Teismann P
    FASEB J; 2009 Oct; 23(10):3263-72. PubMed ID: 19542204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.