These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22369140)

  • 1. Prioritizing disease candidate genes by a gene interconnectedness-based approach.
    Hsu CL; Huang YH; Hsu CT; Yang UC
    BMC Genomics; 2011 Nov; 12 Suppl 3(Suppl 3):S25. PubMed ID: 22369140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vertex similarity-based framework to discover and rank orphan disease-related genes.
    Zhu C; Kushwaha A; Berman K; Jegga AG
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S8. PubMed ID: 23281592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HybridRanker: Integrating network topology and biomedical knowledge to prioritize cancer candidate genes.
    Razaghi-Moghadam Z; Abdollahi R; Goliaei S; Ebrahimi M
    J Biomed Inform; 2016 Dec; 64():139-146. PubMed ID: 27725293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks.
    Erten S; Bebek G; Koyutürk M
    J Comput Biol; 2011 Nov; 18(11):1561-74. PubMed ID: 22035267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease candidate gene identification and prioritization using protein interaction networks.
    Chen J; Aronow BJ; Jegga AG
    BMC Bioinformatics; 2009 Feb; 10():73. PubMed ID: 19245720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomine: predicting links between biological entities using network models of heterogeneous databases.
    Eronen L; Toivonen H
    BMC Bioinformatics; 2012 Jun; 13():119. PubMed ID: 22672646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network-based Identification of novel cancer genes.
    Ostlund G; Lindskog M; Sonnhammer EL
    Mol Cell Proteomics; 2010 Apr; 9(4):648-55. PubMed ID: 19959820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritizing candidate disease genes by network-based boosting of genome-wide association data.
    Lee I; Blom UM; Wang PI; Shim JE; Marcotte EM
    Genome Res; 2011 Jul; 21(7):1109-21. PubMed ID: 21536720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.
    Zhu J; Qin Y; Liu T; Wang J; Zheng X
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S5. PubMed ID: 23734762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network.
    Zhou M; Wang X; Li J; Hao D; Wang Z; Shi H; Han L; Zhou H; Sun J
    Mol Biosyst; 2015 Mar; 11(3):760-9. PubMed ID: 25502053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples.
    Mordelet F; Vert JP
    BMC Bioinformatics; 2011 Oct; 12():389. PubMed ID: 21977986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico gene prioritization by integrating multiple data sources.
    Chen Y; Wang W; Zhou Y; Shields R; Chanda SK; Elston RC; Li J
    PLoS One; 2011; 6(6):e21137. PubMed ID: 21731658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.