These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22369144)

  • 21. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol.
    Liou RM; Chen SH
    J Hazard Mater; 2009 Dec; 172(1):498-506. PubMed ID: 19640643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water.
    Liu J; Chen X; Wang Y; Strathmann TJ; Werth CJ
    Environ Sci Technol; 2015 Nov; 49(21):12932-40. PubMed ID: 26422179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water.
    Garron A; Epron F
    Water Res; 2005 Aug; 39(13):3073-81. PubMed ID: 15982701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of 4-chlorophenol by the anodic-cathodic cooperative effect with a Pd/MWNT gas-diffusion electrode.
    Wang H; Wei XJ; Bian ZY
    Water Sci Technol; 2012; 65(11):2010-5. PubMed ID: 22592472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced activity and selectivity of carbon nanofiber supported Pd catalysts for nitrite reduction.
    Shuai D; Choe JK; Shapley JR; Werth CJ
    Environ Sci Technol; 2012 Mar; 46(5):2847-55. PubMed ID: 22295991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater.
    Soares OS; Orfão JJ; Gallegos-Suarez E; Castillejos E; Rodríguez-Ramos I; Pereira MF
    Environ Technol; 2012; 33(19-21):2353-8. PubMed ID: 23393977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.
    Liu J; Choe JK; Sasnow Z; Werth CJ; Strathmann TJ
    Water Res; 2013 Jan; 47(1):91-101. PubMed ID: 23084116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrate reduction in water: influence of the addition of a second metal on the performances of the Pd/CeO(2) catalyst.
    Devadas A; Vasudevan S; Epron F
    J Hazard Mater; 2011 Jan; 185(2-3):1412-7. PubMed ID: 21075520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Palladium-indium catalyzed reduction of N-nitrosodimethylamine: indium as a promoter metal.
    Davie MG; Shih K; Pacheco FA; Leckie JO; Reinhard M
    Environ Sci Technol; 2008 Apr; 42(8):3040-6. PubMed ID: 18497163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the treatment of 2-sec-butyl-4,6-dinitrophenol (DNBP) wastewater by ClO2 in the presence of aluminum oxide as catalyst.
    Wang HL; Dong J; Jiang WF
    J Hazard Mater; 2010 Nov; 183(1-3):347-52. PubMed ID: 20685038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivity of Aryl Halides for Reductive Dehalogenation in (Sea)water Using Polymer-Supported Terpyridine Palladium Catalyst.
    Suzuka T; Sueyoshi H; Maehara S; Ogasawara H
    Molecules; 2015 May; 20(6):9906-14. PubMed ID: 26029859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regeneration of sulfur-fouled bimetallic Pd-based catalysts.
    Chaplin BP; Shapley JR; Werth CJ
    Environ Sci Technol; 2007 Aug; 41(15):5491-7. PubMed ID: 17822122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biogenic metals in advanced water treatment.
    Hennebel T; De Gusseme B; Boon N; Verstraete W
    Trends Biotechnol; 2009 Feb; 27(2):90-8. PubMed ID: 19111361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm-palladium catalyst.
    Beauregard DA; Yong P; Macaskie LE; Johns ML
    Biotechnol Bioeng; 2010 Sep; 107(1):11-20. PubMed ID: 20506297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure relationship for catalytic dechlorination rate of dichlorobenzenes in water.
    Xu X; Zhou H; Wang D
    Chemosphere; 2005 Mar; 58(11):1497-502. PubMed ID: 15694469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater.
    Pariente MI; Melero JA; Martínez F; Botas JA; Gallego AI
    Water Sci Technol; 2010; 61(7):1829-36. PubMed ID: 20371942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid reduction of N-nitrosamine disinfection byproducts in water with hydrogen and porous nickel catalysts.
    Frierdich AJ; Shapley JR; Strathmann TJ
    Environ Sci Technol; 2008 Jan; 42(1):262-9. PubMed ID: 18350906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TiO2 and Fe (III) photocatalytic ozonation processes of a mixture of emergent contaminants of water.
    Rodríguez EM; Fernández G; Alvarez PM; Beltrán FJ
    Water Res; 2012 Jan; 46(1):152-66. PubMed ID: 22078252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced catalytic degradation process of o-nitrochlorobenzene by palladium-catalyzed fe0 particles.
    Xu XH; Zhou HY; Zhou M; Wang DH
    J Environ Sci (China); 2005; 17(5):849-52. PubMed ID: 16313017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.