These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22369144)

  • 41. Catalytic reduction of N2O over Ag-Pd/Al2O3 bimetallic catalysts.
    Tzitzios VK; Georgakilas V
    Chemosphere; 2005 May; 59(6):887-91. PubMed ID: 15811418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems.
    Christoskova S; Stoyanova M
    J Hazard Mater; 2009 Jun; 165(1-3):690-5. PubMed ID: 19038496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.
    Liou RM; Chen SH; Huang CH; Hung MY; Chang JS; Lai CL
    Water Sci Technol; 2010; 61(6):1489-98. PubMed ID: 20351428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-assembly of palladium nanoparticles on periodic mesoporous organosilica using an in situ reduction approach: catalysts for ullmann reactions in water.
    Zhang F; Yin J; Chai W; Li H
    ChemSusChem; 2010 Jun; 3(6):724-7. PubMed ID: 20432500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst.
    He N; Li P; Zhou Y; Ren W; Fan S; Verkhozina VA
    J Hazard Mater; 2009 May; 164(1):126-32. PubMed ID: 18823704
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of 1,2-dichlorobenzene from water emulsion using adsorbent catalysts and its regeneration.
    Netskina OV; Tayban ES; Moiseenko AP; Komova OV; Mukha SA; Simagina VI
    J Hazard Mater; 2015 Mar; 285():84-93. PubMed ID: 25497020
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.
    Sichel C; Garcia C; Andre K
    Water Res; 2011 Dec; 45(19):6371-80. PubMed ID: 22000058
    [TBL] [Abstract][Full Text] [Related]  

  • 48. First principles investigations of Pd-on-Au nanostructures for trichloroethene catalytic removal from groundwater.
    Andersin J; Honkala K
    Phys Chem Chem Phys; 2011 Jan; 13(4):1386-94. PubMed ID: 21152633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover.
    Stahl SS
    Angew Chem Int Ed Engl; 2004 Jun; 43(26):3400-20. PubMed ID: 15221827
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogen-based tubular catalytic membrane for removing nitrate from groundwater.
    Chen YX; Zhang Y; Liu HY; Sharma KR; Chen GH
    Environ Technol; 2004 Feb; 25(2):227-34. PubMed ID: 15116881
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment.
    Broséus R; Vincent S; Aboulfadl K; Daneshvar A; Sauvé S; Barbeau B; Prévost M
    Water Res; 2009 Oct; 43(18):4707-17. PubMed ID: 19695660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic hydrodechlorination of chloroaromatic gas streams promoted by Pd and Ni: the role of hydrogen spillover.
    Amorim C; Keane MA
    J Hazard Mater; 2012 Apr; 211-212():208-17. PubMed ID: 21872988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.
    Julcour Lebigue C; Andriantsiferana C; N'Guessan Krou ; Ayral C; Mohamed E; Wilhelm AM; Delmas H; Le Coq L; Gerente C; Smith KM; Pullket S; Fowler GD; Graham NJ
    J Environ Manage; 2010 Dec; 91(12):2432-9. PubMed ID: 20678857
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications.
    Pisarenko AN; Stanford BD; Yan D; Gerrity D; Snyder SA
    Water Res; 2012 Feb; 46(2):316-26. PubMed ID: 22137292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidation of methane over palladium catalysts: effect of the support.
    Escandón LS; Ordóñez S; Vega A; Díez FV
    Chemosphere; 2005 Jan; 58(1):9-17. PubMed ID: 15522328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Palladium-catalyzed hydrodehalogenation of 1,2,4,5-tetrachlorobenzene in water-ethanol mixtures.
    Wee HY; Cunningham JA
    J Hazard Mater; 2008 Jun; 155(1-2):1-9. PubMed ID: 18054166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants.
    De Corte S; Hennebel T; Fitts JP; Sabbe T; Bliznuk V; Verschuere S; van der Lelie D; Verstraete W; Boon N
    Environ Sci Technol; 2011 Oct; 45(19):8506-13. PubMed ID: 21877727
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical catalytic treatment of wastewater by metal ion supported on cation exchange resin.
    Wang Y; Wang B; Ma H
    J Hazard Mater; 2006 Oct; 137(3):1853-8. PubMed ID: 16793204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of endocrine disruptors using homogeneous metal catalyst combined with nanofiltration membrane.
    Kim JH; Kwon H; Lee S; Lee CH
    Water Sci Technol; 2005; 51(6-7):381-90. PubMed ID: 16004000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic wet oxidation of ammonia: why is N2 formed preferentially against NO3 -?
    Lee DK; Cho JS; Yoon WL
    Chemosphere; 2005 Oct; 61(4):573-8. PubMed ID: 16202811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.