These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22369280)

  • 1. Numerical-analytic implementation of the higher-order canonical Van Vleck perturbation theory for the interpretation of medium-sized molecule vibrational spectra.
    Krasnoshchekov SV; Isayeva EV; Stepanov NF
    J Phys Chem A; 2012 Apr; 116(14):3691-709. PubMed ID: 22369280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Criteria for first- and second-order vibrational resonances and correct evaluation of the Darling-Dennison resonance coefficients using the canonical Van Vleck perturbation theory.
    Krasnoshchekov SV; Isayeva EV; Stepanov NF
    J Chem Phys; 2014 Dec; 141(23):234114. PubMed ID: 25527926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anharmonic vibrational analysis of the gas-phase infrared spectrum of 1,1-difluoroethylene using the operator van Vleck canonical perturbation theory.
    Krasnoshchekov SV; Craig NC; Stepanov NF
    J Phys Chem A; 2013 Apr; 117(14):3041-56. PubMed ID: 23441813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Anharmonic Analysis of Vibrational Spectra of Uracil Using the Numerical-Analytic Implementation of Operator Van Vleck Perturbation Theory.
    Krasnoshchekov SV; Vogt N; Stepanov NF
    J Phys Chem A; 2015 Jun; 119(25):6723-37. PubMed ID: 26020099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules.
    Krasnoshchekov SV; Stepanov NF
    J Chem Phys; 2013 Nov; 139(18):184101. PubMed ID: 24320248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anharmonic vibrational analysis of s-trans and s-cis conformers of acryloyl fluoride using numerical-analytic Van Vleck operator perturbation theory.
    Krasnoshchekov SV; Craig NC; Koroleva LA; Stepanov NF
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():66-79. PubMed ID: 28800431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anharmonic Vibrational Analysis of the Infrared and Raman Gas-Phase Spectra of s-trans- and s-gauche-1,3-Butadiene.
    Krasnoshchekov SV; Craig NC; Boopalachandran P; Laane J; Stepanov NF
    J Phys Chem A; 2015 Oct; 119(43):10706-23. PubMed ID: 26437183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonempirical anharmonic vibrational perturbation theory applied to biomolecules: free-base porphin.
    Krasnoshchekov SV; Stepanov NF
    J Phys Chem A; 2015 Mar; 119(9):1616-27. PubMed ID: 25360995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to VPT2: Accurate and Intuitive Simulations of CH Stretching Infrared Spectra Using VPT2+K with Large Effective Hamiltonian Resonance Treatments.
    Franke PR; Stanton JF; Douberly GE
    J Phys Chem A; 2021 Feb; 125(6):1301-1324. PubMed ID: 33506678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sums and densities of fully coupled anharmonic vibrational states: a comparison of three practical methods.
    Nguyen TL; Barker JR
    J Phys Chem A; 2010 Mar; 114(10):3718-30. PubMed ID: 20170143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes.
    Krasnoshchekov SV; Schutski RS; Craig NC; Sibaev M; Crittenden DL
    J Chem Phys; 2018 Feb; 148(8):084102. PubMed ID: 29495771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in CO2, H2CO, and C6H6.
    Yagi K; Hirata S; Hirao K
    Phys Chem Chem Phys; 2008 Apr; 10(13):1781-8. PubMed ID: 18350183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal internal coordinates, vibrational spectrum, and effective Hamiltonian for ozone.
    Zúñiga J; Picón JA; Bastida A; Requena A
    J Chem Phys; 2007 Jun; 126(24):244305. PubMed ID: 17614547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Darling-Dennison resonance and Coriolis coupling in the bending overtones of the A 1A(u) state of acetylene, C2H2.
    Merer AJ; Yamakita N; Tsuchiya S; Steeves AH; Bechtel HA; Field RW
    J Chem Phys; 2008 Aug; 129(5):054304. PubMed ID: 18698897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trans-1-chloro-2-fluoroethylene: microwave spectra and anharmonic force field.
    Cazzoli G; Puzzarini C; Gambi A
    J Chem Phys; 2004 Apr; 120(14):6495-501. PubMed ID: 15267539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anharmonic analysis of the vibrational spectrum of ketene by density functional theory using second-order perturbative approach.
    Gupta VP
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):870-6. PubMed ID: 17049910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximate inclusion of four-mode couplings in vibrational coupled-cluster theory.
    Zoccante A; Seidler P; Hansen MB; Christiansen O
    J Chem Phys; 2012 May; 136(20):204118. PubMed ID: 22667551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches.
    Kjaergaard HG; Garden AL; Chaban GM; Gerber RB; Matthews DA; Stanton JF
    J Phys Chem A; 2008 May; 112(18):4324-35. PubMed ID: 18407701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational coupled cluster theory.
    Christiansen O
    J Chem Phys; 2004 Feb; 120(5):2149-59. PubMed ID: 15268353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.