These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22369350)

  • 1. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas.
    Lankau EW; Hong PY; Mackie RI
    Mol Ecol; 2012 Apr; 21(7):1779-88. PubMed ID: 22369350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing.
    Hong PY; Wheeler E; Cann IK; Mackie RI
    ISME J; 2011 Sep; 5(9):1461-70. PubMed ID: 21451584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do diet and taxonomy influence insect gut bacterial communities?
    Colman DR; Toolson EC; Takacs-Vesbach CD
    Mol Ecol; 2012 Oct; 21(20):5124-37. PubMed ID: 22978555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagenomic-based study of the phylogenetic and functional gene diversity in Galápagos land and marine iguanas.
    Hong PY; Mao Y; Ortiz-Kofoed S; Shah R; Cann I; Mackie RI
    Microb Ecol; 2015 Feb; 69(2):444-56. PubMed ID: 25524569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galápagos archipelago.
    Mackie RI; Rycyk M; Ruemmler RL; Aminov RI; Wikelski M
    Physiol Biochem Zool; 2004; 77(1):127-38. PubMed ID: 15057723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae).
    Egert M; Marhan S; Wagner B; Scheu S; Friedrich MW
    FEMS Microbiol Ecol; 2004 May; 48(2):187-97. PubMed ID: 19712402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary age of the Galápagos iguanas predates the age of the present Galápagos islands.
    Rassmann K
    Mol Phylogenet Evol; 1997 Apr; 7(2):158-72. PubMed ID: 9126557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut wall bacteria of earthworms: a natural selection process.
    Thakuria D; Schmidt O; Finan D; Egan D; Doohan FM
    ISME J; 2010 Mar; 4(3):357-66. PubMed ID: 19924156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salmonella strains isolated from Galápagos iguanas show spatial structuring of serovar and genomic diversity.
    Lankau EW; Cruz Bedon L; Mackie RI
    PLoS One; 2012; 7(5):e37302. PubMed ID: 22615968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes.
    Chu H; Fierer N; Lauber CL; Caporaso JG; Knight R; Grogan P
    Environ Microbiol; 2010 Nov; 12(11):2998-3006. PubMed ID: 20561020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent temporal dynamics of the human infant gut microbiota.
    Trosvik P; Stenseth NC; Rudi K
    ISME J; 2010 Feb; 4(2):151-8. PubMed ID: 19710708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-population variation of carotenoids in Galápagos land iguanas (Conolophus subcristatus).
    Costantini D; Dell'omo G; Casagrande S; Fabiani A; Carosi M; Bertacche V; Marquez C; Snell H; Snell H; Tapia W; Gentile G
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Oct; 142(2):239-44. PubMed ID: 16129639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic fingerprinting and serotyping of Salmonella from Galápagos iguanas demonstrates island differences in strain diversity.
    Wheeler E; Cann IK; Mackie RI
    Environ Microbiol Rep; 2011 Apr; 3(2):166-73. PubMed ID: 23761248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial community composition in soils of Northern Victoria Land, Antarctica.
    Niederberger TD; McDonald IR; Hacker AL; Soo RM; Barrett JE; Wall DH; Cary SC
    Environ Microbiol; 2008 Jul; 10(7):1713-24. PubMed ID: 18373679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves.
    Uyeno Y; Sekiguchi Y; Kamagata Y
    Lett Appl Microbiol; 2010 Nov; 51(5):570-7. PubMed ID: 20849397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No impact of a short-term climatic "El Niño" fluctuation on gut microbial diversity in populations of the Galápagos marine iguana (Amblyrhynchus cristatus).
    Ibáñez A; Bletz MC; Quezada G; Geffers R; Jarek M; Vences M; Steinfartz S
    Naturwissenschaften; 2021 Feb; 108(1):7. PubMed ID: 33528676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae.
    Rasmussen HE; Martínez I; Lee JY; Walter J
    J Appl Microbiol; 2009 Oct; 107(4):1108-18. PubMed ID: 19486425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in land use alter the structure of bacterial communities in Western Amazon soils.
    da C Jesus E; Marsh TL; Tiedje JM; de S Moreira FM
    ISME J; 2009 Sep; 3(9):1004-11. PubMed ID: 19440233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons.
    Shepherd ML; Swecker WS; Jensen RV; Ponder MA
    FEMS Microbiol Lett; 2012 Jan; 326(1):62-8. PubMed ID: 22092776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of gut bacterial colonization in three primate species.
    McKenney EA; Rodrigo A; Yoder AD
    PLoS One; 2015; 10(5):e0124618. PubMed ID: 25970595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.