BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22369457)

  • 1. Perfect Hamming code with a hash table for faster genome mapping.
    Takenaka Y; Seno S; Matsuda H
    BMC Genomics; 2011 Nov; 12 Suppl 3(Suppl 3):S8. PubMed ID: 22369457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIA: a genome mapper using hybrid index-based sequence alignment.
    Choi J; Park K; Cho SB; Chung M
    Algorithms Mol Biol; 2015; 10():30. PubMed ID: 26702294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving hash-q exact string matching algorithm with perfect hashing for DNA sequences.
    Karcioglu AA; Bulut H
    Comput Biol Med; 2021 Apr; 131():104292. PubMed ID: 33662682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast randomized approximate string matching with succinct hash data structures.
    Policriti A; Prezza N
    BMC Bioinformatics; 2015; 16 Suppl 9(Suppl 9):S4. PubMed ID: 26051265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomy of a hash-based long read sequence mapping algorithm for next generation DNA sequencing.
    Misra S; Agrawal A; Liao WK; Choudhary A
    Bioinformatics; 2011 Jan; 27(2):189-95. PubMed ID: 21088030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MaxSSmap: a GPU program for mapping divergent short reads to genomes with the maximum scoring subsequence.
    Turki T; Roshan U
    BMC Genomics; 2014 Nov; 15(1):969. PubMed ID: 25398475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping.
    Lee WP; Stromberg MP; Ward A; Stewart C; Garrison EP; Marth GT
    PLoS One; 2014; 9(3):e90581. PubMed ID: 24599324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analysis.
    Firtina C; Park J; Alser M; Kim JS; Cali DS; Shahroodi T; Ghiasi NM; Singh G; Kanellopoulos K; Alkan C; Mutlu O
    NAR Genom Bioinform; 2023 Mar; 5(1):lqad004. PubMed ID: 36685727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ψ-RA: a parallel sparse index for genomic read alignment.
    Oğuzhan Külekci M; Hon WK; Shah R; Scott Vitter J; Xu B
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S7. PubMed ID: 21989248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping reads on a genomic sequence: an algorithmic overview and a practical comparative analysis.
    Schbath S; Martin V; Zytnicki M; Fayolle J; Loux V; Gibrat JF
    J Comput Biol; 2012 Jun; 19(6):796-813. PubMed ID: 22506536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate short read alignment with Burrows-Wheeler transform.
    Li H; Durbin R
    Bioinformatics; 2009 Jul; 25(14):1754-60. PubMed ID: 19451168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search.
    Liu X; Deng C; Lang B; Tao D; Li X
    IEEE Trans Image Process; 2016 Feb; 25(2):907-19. PubMed ID: 26661297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YOABS: yet other aligner of biological sequences--an efficient linearly scaling nucleotide aligner.
    Galinsky VL
    Bioinformatics; 2012 Apr; 28(8):1070-7. PubMed ID: 22402614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space-efficient computation of k-mer dictionaries for large values of k.
    Díaz-Domínguez D; Leinonen M; Salmela L
    Algorithms Mol Biol; 2024 Apr; 19(1):14. PubMed ID: 38581000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faster single-end alignment generation utilizing multi-thread for BWA.
    Jo H; Koh G
    Biomed Mater Eng; 2015; 26 Suppl 1():S1791-6. PubMed ID: 26405948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and efficient short read mapping based on a succinct hash index.
    Zhang H; Chan Y; Fan K; Schmidt B; Liu W
    BMC Bioinformatics; 2018 Mar; 19(1):92. PubMed ID: 29523083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of alignment and SNP calling algorithms for next-generation sequencing data.
    Mielczarek M; Szyda J
    J Appl Genet; 2016 Feb; 57(1):71-9. PubMed ID: 26055432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient computation of absent words in genomic sequences.
    Herold J; Kurtz S; Giegerich R
    BMC Bioinformatics; 2008 Mar; 9():167. PubMed ID: 18366790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm.
    Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS
    Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMMA: an efficient massive mapping algorithm using improved approximate mapping filtering.
    Zhang X; Cao ZW; Lin ZX; Wang QK; Li YX
    Acta Biochim Biophys Sin (Shanghai); 2006 Dec; 38(12):857-64. PubMed ID: 17151779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.