These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22369964)

  • 81. Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities.
    Sutter A; Amberg A; Boyer S; Brigo A; Contrera JF; Custer LL; Dobo KL; Gervais V; Glowienke S; van Gompel J; Greene N; Muster W; Nicolette J; Reddy MV; Thybaud V; Vock E; White AT; Müller L
    Regul Toxicol Pharmacol; 2013 Oct; 67(1):39-52. PubMed ID: 23669331
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships.
    Liu Z; Kelly R; Fang H; Ding D; Tong W
    Chem Res Toxicol; 2011 Jul; 24(7):1062-70. PubMed ID: 21627106
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [Researches on the in silico prediction of structure-activity relationship in the regulatory science sectors].
    Hirose A
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2010; (128):27-8. PubMed ID: 21381391
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models.
    Arena VC; Sussman NB; Mazumdar S; Yu S; Macina OT
    SAR QSAR Environ Res; 2004 Feb; 15(1):1-18. PubMed ID: 15113065
    [TBL] [Abstract][Full Text] [Related]  

  • 85. In silico assessment of genotoxicity. Combinations of sensitive structural alerts minimize false negative predictions for all genotoxicity endpoints and can single out chemicals for which experimentation can be avoided.
    Benigni R
    Regul Toxicol Pharmacol; 2021 Nov; 126():105042. PubMed ID: 34506881
    [TBL] [Abstract][Full Text] [Related]  

  • 86. In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results.
    Mombelli E; Raitano G; Benfenati E
    Methods Mol Biol; 2016; 1425():87-105. PubMed ID: 27311463
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Assessment of methods to define the applicability domain of structural alert models.
    Ellison CM; Sherhod R; Cronin MT; Enoch SJ; Madden JC; Judson PN
    J Chem Inf Model; 2011 May; 51(5):975-85. PubMed ID: 21488656
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The FEMA GRAS assessment of phenethyl alcohol, aldehyde, acid, and related acetals and esters used as flavor ingredients.
    Adams TB; Cohen SM; Doull J; Feron VJ; Goodman JI; Marnett LJ; Munro IC; Portoghese PS; Smith RL; Waddell WJ; Wagner BM;
    Food Chem Toxicol; 2005 Aug; 43(8):1179-206. PubMed ID: 15950814
    [TBL] [Abstract][Full Text] [Related]  

  • 89. (Q)SARs: gatekeepers against risk on chemicals?
    Hulzebos EM; Posthumus R
    SAR QSAR Environ Res; 2003 Aug; 14(4):285-316. PubMed ID: 14506871
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Performance of In Silico Models for Mutagenicity Prediction of Food Contact Materials.
    Van Bossuyt M; Van Hoeck E; Raitano G; Vanhaecke T; Benfenati E; Mertens B; Rogiers V
    Toxicol Sci; 2018 Jun; 163(2):632-638. PubMed ID: 29579255
    [TBL] [Abstract][Full Text] [Related]  

  • 91. SAR genotoxicity and tumorigenicity predictions for 2-MI and 4-MI using multiple SAR software.
    Krishna KA; Goel S; Krishna G
    Toxicol Mech Methods; 2014 May; 24(4):284-93. PubMed ID: 24401039
    [TBL] [Abstract][Full Text] [Related]  

  • 92. FEMA GRAS assessment of natural flavor complexes: Eucalyptus oil and other cyclic ether-containing flavoring ingredients.
    Eisenbrand G; Cohen SM; Fukushima S; Gooderham NJ; Guengerich FP; Hecht SS; Rietjens IMCM; Rosol TJ; Davidsen JM; Harman CL; Taylor SV
    Food Chem Toxicol; 2021 Sep; 155():112357. PubMed ID: 34217737
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The FEMA GRAS assessment of cinnamyl derivatives used as flavor ingredients.
    Adams TB; Cohen SM; Doull J; Feron VJ; Goodman JI; Marnett LJ; Munro IC; Portoghese PS; Smith RL; Waddell WJ; Wagner BM
    Food Chem Toxicol; 2004 Feb; 42(2):157-85. PubMed ID: 14667463
    [TBL] [Abstract][Full Text] [Related]  

  • 94. (Q)SAR tools for the prediction of mutagenic properties: Are they ready for application in pesticide regulation?
    Herrmann K; Holzwarth A; Rime S; Fischer BC; Kneuer C
    Pest Manag Sci; 2020 Oct; 76(10):3316-3325. PubMed ID: 32223060
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Integrated in silico approaches for the prediction of Ames test mutagenicity.
    Modi S; Li J; Malcomber S; Moore C; Scott A; White A; Carmichael P
    J Comput Aided Mol Des; 2012 Sep; 26(9):1017-33. PubMed ID: 22918548
    [TBL] [Abstract][Full Text] [Related]  

  • 96. FEMA GRAS assessment of natural flavor complexes: Lavender, Guaiac Coriander-derived and related flavoring ingredients.
    Fukushima S; Cohen SM; Eisenbrand G; Gooderham NJ; Guengerich FP; Hecht SS; Rietjens IMCM; Rosol TJ; Davidsen JM; Harman CL; Lu V; Taylor SV
    Food Chem Toxicol; 2020 Nov; 145():111584. PubMed ID: 32682832
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Assessing the impact of expert knowledge on ICH M7 (Q)SAR predictions. Is expert review still needed?
    Jayasekara PS; Skanchy SK; Kim MT; Kumaran G; Mugabe BE; Woodard LE; Yang J; Zych AJ; Kruhlak NL
    Regul Toxicol Pharmacol; 2021 Oct; 125():105006. PubMed ID: 34273441
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Updated procedure for the safety evaluation of natural flavor complexes used as ingredients in food.
    Cohen SM; Eisenbrand G; Fukushima S; Gooderham NJ; Guengerich FP; Hecht SS; Rietjens IMCM; Davidsen JM; Harman CL; Taylor SV
    Food Chem Toxicol; 2018 Mar; 113():171-178. PubMed ID: 29355624
    [TBL] [Abstract][Full Text] [Related]  

  • 99. FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients.
    Cohen SM; Eisenbrand G; Fukushima S; Gooderham NJ; Guengerich FP; Hecht SS; Rietjens IMCM; Bastaki M; Davidsen JM; Harman CL; McGowen M; Taylor SV
    Food Chem Toxicol; 2019 Feb; 124():192-218. PubMed ID: 30481573
    [TBL] [Abstract][Full Text] [Related]  

  • 100. It's difficult, but important, to make negative predictions.
    Williams RV; Amberg A; Brigo A; Coquin L; Giddings A; Glowienke S; Greene N; Jolly R; Kemper R; O'Leary-Steele C; Parenty A; Spirkl HP; Stalford SA; Weiner SK; Wichard J
    Regul Toxicol Pharmacol; 2016 Apr; 76():79-86. PubMed ID: 26785392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.