These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22370356)

  • 1. Changes in the activities of enzymes involved in the degradation of butylbenzyl phthalate by Pleurotus ostreatus.
    Hwang SS; Kim HY; Ka JO; Song HG
    J Microbiol Biotechnol; 2012 Feb; 22(2):239-43. PubMed ID: 22370356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus.
    Hwang SS; Choi HT; Song HG
    J Microbiol Biotechnol; 2008 Apr; 18(4):767-72. PubMed ID: 18467874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fungal pellet morphology on enzyme activities involved in phthalate degradation.
    Kim YM; Song HG
    J Microbiol; 2009 Aug; 47(4):420-4. PubMed ID: 19763415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium.
    Baldrian P; Gabriel J
    FEMS Microbiol Lett; 2003 Mar; 220(2):235-40. PubMed ID: 12670686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn2+ alters peroxidase profiles and lignin degradation by the white-rot fungus Pleurotus ostreatus under different nutritional and growth conditions.
    Cohen R; Persky L; Hazan-Eitan Z; Yarden O; Hadar Y
    Appl Biochem Biotechnol; 2002; 102-103(1-6):415-29. PubMed ID: 12396142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of 2III7-3 fractional factorial experimental design to enhance enzymatic activities of Pleurotus ostreatus with high concentrations of polychlorinated biphenyls.
    Gayosso-Canales M; Esparza-García FJ; Bermúdez-Cruz RM; Tomasini A; Ruiz-Aguilar GM; Rodríguez-Vázquez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(3):298-305. PubMed ID: 21308601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Pleurotus ostreatus and Trametes versicolor on triclosan biodegradation and activity of laccase and manganese peroxidase enzymes.
    Maadani Mallak A; Lakzian A; Khodaverdi E; Haghnia GH; Mahmoudi S
    Microb Pathog; 2020 Dec; 149():104473. PubMed ID: 32916239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of polycyclic aromatic hydrocarbons on laccase production by white rot fungus Pleurotus ostreatus D1].
    Pozdniakova NN; Nikiforova SV; Makarov OE; Turkovskaia OV
    Prikl Biokhim Mikrobiol; 2011; 47(5):595-601. PubMed ID: 22232903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic study of 17α-ethinylestradiol biodegradation by Pleurotus ostreatus: tracking of extracelullar and intracelullar degradation mechanisms.
    Křesinová Z; Moeder M; Ezechiáš M; Svobodová K; Cajthaml T
    Environ Sci Technol; 2012 Dec; 46(24):13377-85. PubMed ID: 23150991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction.
    Tinoco R; Acevedo A; Galindo E; Serrano-Carreón L
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):531-40. PubMed ID: 20694851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatus.
    Elhusseiny SM; Amin HM; Shebl RI
    Int Microbiol; 2019 Jun; 22(2):217-225. PubMed ID: 30810987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Analysis of the Pleurotus ostreatus Laccase Gene (PoLac) Family and Functional Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin.
    Jiao X; Li G; Wang Y; Nie F; Cheng X; Abdullah M; Lin Y; Cai Y
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29641470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of lignocellulose-degrading enzymes and changes in soil bacterial communities during the growth of Pleurotus ostreatus in soil with different carbon content.
    Snajdr J; Baldrian P
    Folia Microbiol (Praha); 2006; 51(6):579-90. PubMed ID: 17455795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability of laccase activity in the white-rot basidiomycete Pleurotus ostreatus.
    Baldrian P; Gabriel J
    Folia Microbiol (Praha); 2002; 47(4):385-90. PubMed ID: 12422515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and production of laccases by the ligninolytic fungi, Pleurotus ostreatus and Botryosphaeria rhodina , cultured on basal medium containing the herbicide, Scepter (imazaquin).
    Rezende MI; Barbosa AM; Vasconcelos AF; Haddad R; Dekker RF
    J Basic Microbiol; 2005; 45(6):460-9. PubMed ID: 16304708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of aflatoxin B(1) by fungal laccase enzymes.
    Alberts JF; Gelderblom WC; Botha A; van Zyl WH
    Int J Food Microbiol; 2009 Sep; 135(1):47-52. PubMed ID: 19683355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of the large-scale production process of oyster mushroom (Pleurotus ostreatus) with the analysis of succession and spatial heterogeneity of lignocellulolytic enzyme activities.
    Bánfi R; Pohner Z; Kovács J; Luzics S; Nagy A; Dudás M; Tanos P; Márialigeti K; Vajna B
    Fungal Biol; 2015 Dec; 119(12):1354-1363. PubMed ID: 26615756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligninolytic activity patterns of Pleurotus ostreatus obtained by submerged fermentation in presence of 2,6-dimethoxyphenol and remazol brilliant blue R dye.
    Grandes-Blanco AI; Díaz-Godínez G; Téllez-Téllez M; Delgado-Macuil RJ; Rojas-López M; Bibbins-Martínez MD
    Prep Biochem Biotechnol; 2013; 43(5):468-80. PubMed ID: 23581782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.