These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 22370392)
1. Phosphorus load to surface water from bank erosion in a Danish lowland river basin. Kronvang B; Audet J; Baattrup-Pedersen A; Jensen HS; Larsen SE J Environ Qual; 2012; 41(2):304-13. PubMed ID: 22370392 [TBL] [Abstract][Full Text] [Related]
2. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104 [TBL] [Abstract][Full Text] [Related]
3. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management. Bowes MJ; Hilton J; Irons GP; Hornby DD Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511 [TBL] [Abstract][Full Text] [Related]
4. Buffer zones as a sink for sediment and phosphorus between the field and stream: Danish field experiences. Kronvang B; Laubel A; Larsen SE; Andersen HE; Djurhuus J Water Sci Technol; 2005; 51(3-4):55-62. PubMed ID: 15850174 [TBL] [Abstract][Full Text] [Related]
5. Considerations on the influence of extreme events on the phosphorus transport from river catchments to the sea. Zessner M; Postolache C; Clement A; Kovacs A; Strauss P Water Sci Technol; 2005; 51(11):193-204. PubMed ID: 16114633 [TBL] [Abstract][Full Text] [Related]
6. Linking dissolved and particulate phosphorus export in rivers draining California's Central Valley with anthropogenic sources at the regional scale. Sobota DJ; Harrison JA; Dahlgren RA J Environ Qual; 2011; 40(4):1290-302. PubMed ID: 21712599 [TBL] [Abstract][Full Text] [Related]
7. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters. Stehle S; Dabrowski JM; Bangert U; Schulz R Sci Total Environ; 2016 Mar; 545-546():171-83. PubMed ID: 26745303 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling. Greene S; Taylor D; McElarney YR; Foy RH; Jordan P Sci Total Environ; 2011 May; 409(11):2211-21. PubMed ID: 21429559 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study. Haygarth PM; Wood FL; Heathwaite AL; Butler PJ Sci Total Environ; 2005 May; 344(1-3):83-106. PubMed ID: 15907512 [TBL] [Abstract][Full Text] [Related]
10. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg. Salvia-Castellví M; Iffly JF; Borght PV; Hoffmann L Sci Total Environ; 2005 May; 344(1-3):51-65. PubMed ID: 15907510 [TBL] [Abstract][Full Text] [Related]
11. Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment. McDowell RW; Wilcock RJ J Environ Qual; 2007; 36(2):540-8. PubMed ID: 17332258 [TBL] [Abstract][Full Text] [Related]
12. Impact of grass and grass with poplar buffer strips on atrazine and metolachlor losses in surface runoff and subsurface infiltration from agricultural plots. Caron E; Lafrance P; Auclair JC; Duchemin M J Environ Qual; 2010; 39(2):617-29. PubMed ID: 20176835 [TBL] [Abstract][Full Text] [Related]
13. Balancing between retention and flushing in river networks--optimizing nutrient management to improve trophic state. Honti M; Istvánovics V; Kovács AS Sci Total Environ; 2010 Sep; 408(20):4712-21. PubMed ID: 20638104 [TBL] [Abstract][Full Text] [Related]
14. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence. Telmer K; Costa M; Simões Angélica R; Araujo ES; Maurice Y J Environ Manage; 2006 Oct; 81(2):101-13. PubMed ID: 16824670 [TBL] [Abstract][Full Text] [Related]
15. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Emelko MB; Stone M; Silins U; Allin D; Collins AL; Williams CH; Martens AM; Bladon KD Glob Chang Biol; 2016 Mar; 22(3):1168-84. PubMed ID: 26313547 [TBL] [Abstract][Full Text] [Related]
16. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Zhang S; Lu XX; Sun H; Han J; Higgitt DL Sci Total Environ; 2009 Jan; 407(2):815-25. PubMed ID: 19004473 [TBL] [Abstract][Full Text] [Related]
17. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany. Hirt U; Venohr M; Kreins P; Behrendt H Water Sci Technol; 2008; 58(11):2251-8. PubMed ID: 19092203 [TBL] [Abstract][Full Text] [Related]
18. Phosphorus and sediment loss in a catchment with winter forage grazing of cropland by dairy cattle. McDowell RW J Environ Qual; 2006; 35(2):575-83. PubMed ID: 16510702 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus dynamics along a river continuum. Bowes MJ; House WA; Hodgkinson RA Sci Total Environ; 2003 Sep; 313(1-3):199-212. PubMed ID: 12922071 [TBL] [Abstract][Full Text] [Related]
20. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading. Stutter MI; Demars BO; Langan SJ Water Res; 2010 Aug; 44(15):4425-36. PubMed ID: 20619439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]