BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 22370692)

  • 1. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Regvar M; Pelicon P; Schröder P
    J Hazard Mater; 2013 Mar; 248-249():371-8. PubMed ID: 23416480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrotron study of metal localization in Typha latifolia L. root sections.
    Qian Y; Feng H; Gallagher FJ; Zhu Q; Wu M; Liu CJ; Jones KW; Tappero RV
    J Synchrotron Radiat; 2015 Nov; 22(6):1459-68. PubMed ID: 26524311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions.
    Alonso-Castro AJ; Carranza-Alvarez C; Alfaro-De la Torre MC; Chávez-Guerrero L; García-De la Cruz RF
    Arch Environ Contam Toxicol; 2009 Nov; 57(4):688-96. PubMed ID: 19536587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE.
    Vogel-Mikus K; Simcic J; Pelicon P; Budnar M; Kump P; Necemer M; Mesjasz-Przybyłowicz J; Przybyłowicz WJ; Regvar M
    Plant Cell Environ; 2008 Oct; 31(10):1484-96. PubMed ID: 18643900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of mineral elements of Rheum emodi Wallr. (Polygonaceae).
    Singh P; Negi JS; Rawat MS; Nee Pant GJ
    Biol Trace Elem Res; 2010 Dec; 138(1-3):293-9. PubMed ID: 20084467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.).
    Duman F; Urey E; Koca FD
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17886-96. PubMed ID: 26162443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO4 or CuEDDS.
    Cestone B; Vogel-Mikuš K; Quartacci MF; Rascio N; Pongrac P; Pelicon P; Vavpetič P; Grlj N; Jeromel L; Kump P; Nečemer M; Regvar M; Navari-Izzo F
    Sci Total Environ; 2012 Jun; 427-428():339-46. PubMed ID: 22542302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of exogenous iron on lead accumulation in Typha latifolia from a lead-contaminated soil].
    Zhong SQ; Xu JM
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):78-82. PubMed ID: 23717993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removing heavy metals by in vitro cultures.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Methods Mol Biol; 2012; 877():265-70. PubMed ID: 22610634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead accumulation and association with Fe on Typha latifolia root from an urban brownfield site.
    Feng H; Qian Y; Gallagher FJ; Wu M; Zhang W; Yu L; Zhu Q; Zhang K; Liu CJ; Tappero R
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3743-50. PubMed ID: 23161499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Element concentrations in Rheum palmatum and R. likiangense plants and soil in Tibet plateau].
    Xie Z
    Ying Yong Sheng Tai Xue Bao; 2000 Dec; 11(6):903-6. PubMed ID: 11767569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of selenium using subsurface-flow constructed wetland.
    Azaizeh H; Salhani N; Sebesvari Z; Shardendu S; Emons H
    Int J Phytoremediation; 2006; 8(3):187-98. PubMed ID: 17120524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia.
    Cui H; Schröder P
    J Hazard Mater; 2016 May; 308():355-61. PubMed ID: 26852211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper uptake and its effect on metal distribution in root growth zones of Commelina communis revealed by SRXRF.
    Shi J; Yuan X; Chen X; Wu B; Huang Y; Chen Y
    Biol Trace Elem Res; 2011 Jun; 141(1-3):294-304. PubMed ID: 20449773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site.
    Ben Salem Z; Laffray X; Al-Ashoor A; Ayadi H; Aleya L
    J Environ Sci (China); 2017 Apr; 54():56-68. PubMed ID: 28391949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of EDTA on lead uptake by Typha orientalis Presl: a new lead-accumulating species in southern China.
    Li YL; Liu YG; Liu JL; Zeng GM; Li X
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):36-41. PubMed ID: 18465067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.