These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 22370721)

  • 1. Reduced dimensionality 3D HNCAN for unambiguous HN, CA and N assignment in proteins.
    Rout MK; Mishra P; Atreya HS; Hosur RV
    J Magn Reson; 2012 Mar; 216():161-8. PubMed ID: 22370721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alanine check points in HNN and HN(C)N spectra.
    Chatterjee A; Kumar A; Hosur RV
    J Magn Reson; 2006 Jul; 181(1):21-8. PubMed ID: 16574444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.
    Kumar D; Hosur RV
    Magn Reson Chem; 2011 Sep; 49(9):575-83. PubMed ID: 21818779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks.
    Kumar D
    J Magn Reson; 2013 Dec; 237():85-91. PubMed ID: 24161682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hnCOcaNH and hncoCANH pulse sequences for rapid and unambiguous backbone assignment in (13C, 15N) labeled proteins.
    Kumar D; Reddy JG; Hosur RV
    J Magn Reson; 2010 Sep; 206(1):134-8. PubMed ID: 20643567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DQ-HN[CACB] and DQ-HN(CO)[CACB] sequences with evolution of double quantum Calpha-Cbeta coherences.
    Koźmiński W; Zhukov I
    J Magn Reson; 2004 Nov; 171(1):186-91. PubMed ID: 15504699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BEST-HNN and 2D-(HN)NH experiments for rapid backbone assignment in proteins.
    Kumar D; Paul S; Hosur RV
    J Magn Reson; 2010 May; 204(1):111-7. PubMed ID: 20236846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient high-throughput resonance assignment procedure for structural genomics and protein folding research by NMR.
    Bhavesh NS; Panchal SC; Hosur RV
    Biochemistry; 2001 Dec; 40(49):14727-35. PubMed ID: 11732891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced dimensionality (4,3)D-HN(C)NH for rapid assignment of 1H(N)-15N HSQC peaks in proteins: an analytical tool for protein folding, proteomics, and drug discovery programs.
    Reddy JG; Hosur RV
    Anal Chem; 2012 Dec; 84(23):10404-10. PubMed ID: 23126505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel projected 4D triple resonance experiments for polypeptide backbone chemical shift assignment.
    Xia Y; Arrowsmith CH; Szyperski T
    J Biomol NMR; 2002 Sep; 24(1):41-50. PubMed ID: 12449417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins.
    Reddy JG; Hosur RV
    J Biomol NMR; 2014 Jul; 59(3):199-210. PubMed ID: 24854885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins.
    Bagai I; Ragsdale SW; Zuiderweg ER
    J Biomol NMR; 2011 Feb; 49(2):69-74. PubMed ID: 21190062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins.
    Kumar D
    J Struct Funct Genomics; 2013 Sep; 14(3):109-18. PubMed ID: 23982149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the carbonyl chemical shift to relieve degeneracies in triple-resonance assignment experiments.
    Sayers EW; Torchia DA
    J Magn Reson; 2001 Dec; 153(2):246-53. PubMed ID: 11740901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient sequential assignments in proteins with reduced dimensionality 3D HN(CA)NH.
    Chandra K; Jaipuria G; Shet D; Atreya HS
    J Biomol NMR; 2012 Feb; 52(2):115-26. PubMed ID: 22228480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and dynamic characterization of the acid-unfolded state of hUBF HMG box 1 provides clues for the early events in protein folding.
    Zhang X; Xu Y; Zhang J; Wu J; Shi Y
    Biochemistry; 2005 Jun; 44(22):8117-25. PubMed ID: 15924431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins.
    Bayrhuber M; Riek R
    J Magn Reson; 2011 Apr; 209(2):310-4. PubMed ID: 21353798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins.
    Panchal SC; Bhavesh NS; Hosur RV
    J Biomol NMR; 2001 Jun; 20(2):135-47. PubMed ID: 11495245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HNCAN pulse sequences for sequential backbone resonance assignment across proline residues in perdeuterated proteins.
    Löhr F; Pfeiffer S; Lin YJ; Hartleib J; Klimmek O; Rüterjans H
    J Biomol NMR; 2000 Dec; 18(4):337-46. PubMed ID: 11200528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple resonance solid state NMR experiments with reduced dimensionality evolution periods.
    Astrof NS; Lyon CE; Griffin RG
    J Magn Reson; 2001 Oct; 152(2):303-7. PubMed ID: 11567583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.