BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22370785)

  • 1. Phenylpropanoid ester from Zingiber officinale and their inhibitory effects on the production of nitric oxide.
    Hong SS; Oh JS
    Arch Pharm Res; 2012 Feb; 35(2):315-20. PubMed ID: 22370785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of macrophage functions by compounds isolated from Zingiber officinale.
    Koh EM; Kim HJ; Kim S; Choi WH; Choi YH; Ryu SY; Kim YS; Koh WS; Park SY
    Planta Med; 2009 Feb; 75(2):148-51. PubMed ID: 19031369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale).
    van Breemen RB; Tao Y; Li W
    Fitoterapia; 2011 Jan; 82(1):38-43. PubMed ID: 20837112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin.
    Li F; Nitteranon V; Tang X; Liang J; Zhang G; Parkin KL; Hu Q
    Food Chem; 2012 Nov; 135(2):332-7. PubMed ID: 22868095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical constituents and their bioactivities of "Tongling White Ginger" (Zingiber officinale).
    Feng T; Su J; Ding ZH; Zheng YT; Li Y; Leng Y; Liu JK
    J Agric Food Chem; 2011 Nov; 59(21):11690-5. PubMed ID: 21954969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-Inflammatory Phenolic Acid Esters from the Roots and Rhizomes of Notopterygium incisium and Their Permeability in the Human Caco-2 Monolayer Cell Model.
    Wu XW; Wei W; Yang XW; Zhang YB; Xu W; Yang YF; Zhong GY; Liu HN; Yang SL
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28587222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gingerol metabolite and a synthetic analogue Capsarol inhibit macrophage NF-kappaB-mediated iNOS gene expression and enzyme activity.
    Aktan F; Henness S; Tran VH; Duke CC; Roufogalis BD; Ammit AJ
    Planta Med; 2006 Jun; 72(8):727-34. PubMed ID: 16732525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Di- and sesqui-terpenoids isolated from the pods of Sindora sumatrana and their potential to inhibit lipopolysaccharide-induced nitric oxide production.
    Jang DS; Min HY; Jeong YH; Lee SK; Seo EK
    Arch Pharm Res; 2004 Mar; 27(3):291-4. PubMed ID: 15089033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata.
    Yang SS; Wang GJ; Wang SY; Lin YY; Kuo YH; Lee TH
    Planta Med; 2009 Apr; 75(5):512-6. PubMed ID: 19189245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoeugenin, a Novel Nitric Oxide Synthase Inhibitor Isolated from the Rhizomes of Imperata cylindrica.
    An HJ; Nugroho A; Song BM; Park HJ
    Molecules; 2015 Dec; 20(12):21336-45. PubMed ID: 26633331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive γ-lactones from the fermented broth of Neosartorya sp.
    Yang SS; Wang GJ; Cheng KF; Chen CH; Ju YM; Tsau YJ; Lee TH
    Planta Med; 2010 Oct; 76(15):1701-5. PubMed ID: 20446242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promotion of Mitochondrial Biogenesis via Activation of AMPK-PGC1ɑ Signaling Pathway by Ginger (Zingiber officinale Roscoe) Extract, and Its Major Active Component 6-Gingerol.
    Deng X; Zhang S; Wu J; Sun X; Shen Z; Dong J; Huang J
    J Food Sci; 2019 Aug; 84(8):2101-2111. PubMed ID: 31369153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nine New Gingerols from the Rhizoma of Zingiber officinale and Their Cytotoxic Activities.
    Li Z; Wang Y; Gao M; Cui W; Zeng M; Cheng Y; Li J
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29393873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells.
    Morikawa T; Sueyoshi M; Chaipech S; Matsuda H; Nomura Y; Yabe M; Matsumoto T; Ninomiya K; Yoshikawa M; Pongpiriyadacha Y; Hayakawa T; Muraoka O
    Bioorg Med Chem; 2012 Aug; 20(16):4968-77. PubMed ID: 22831798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production.
    Jolad SD; Lantz RC; Chen GJ; Bates RB; Timmermann BN
    Phytochemistry; 2005 Jul; 66(13):1614-35. PubMed ID: 15996695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benzannulated 5,5-spiroketal sesquiterpenes from the roots of Angelica Pubescens.
    Tian D; Cao L; Li Q; Huang H; Xu W; Chen G; Song Z; He Y; Yao X; Tang J
    Bioorg Chem; 2021 Feb; 107():104604. PubMed ID: 33422712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood-brain barrier permeability study of ginger constituents.
    Simon A; Darcsi A; Kéry Á; Riethmüller E
    J Pharm Biomed Anal; 2020 Jan; 177():112820. PubMed ID: 31476432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity.
    Min BS; Cuong TD; Hung TM; Min BK; Shin BS; Woo MH
    Bioorg Med Chem Lett; 2012 Dec; 22(24):7436-9. PubMed ID: 23127886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity.
    Ezzat SM; Ezzat MI; Okba MM; Menze ET; Abdel-Naim AB
    J Ethnopharmacol; 2018 Mar; 214():113-123. PubMed ID: 29253614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zingiber officinale protects HaCaT cells and C57BL/6 mice from ultraviolet B-induced inflammation.
    Guahk GH; Ha SK; Jung HS; Kang C; Kim CH; Kim YB; Kim SY
    J Med Food; 2010 Jun; 13(3):673-80. PubMed ID: 20521990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.