These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22370900)

  • 1. Importance of electrostatic polarizability in calculating cysteine acidity constants and copper(I) binding energy of Bacillus subtilis CopZ.
    Click TH; Ponomarev SY; Kaminski GA
    J Comput Chem; 2012 Apr; 33(11):1142-51. PubMed ID: 22370900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic polarization is crucial in reproducing Cu(I) interaction energies and hydration.
    Ponomarev SY; Click TH; Kaminski GA
    J Phys Chem B; 2011 Aug; 115(33):10079-85. PubMed ID: 21761909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ.
    Zhou L; Singleton C; Le Brun NE
    Biochem J; 2008 Aug; 413(3):459-65. PubMed ID: 18419582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA.
    Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM
    Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillus subtilis: the coordination properties of the copper ion.
    Banci L; Bertini I; Del Conte R; Mangani S; Meyer-Klaucke W
    Biochemistry; 2003 Mar; 42(8):2467-74. PubMed ID: 12600214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis.
    Kihlken MA; Leech AP; Le Brun NE
    Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis.
    Kihlken MA; Singleton C; Le Brun NE
    J Biol Inorg Chem; 2008 Aug; 13(6):1011-23. PubMed ID: 18496720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones.
    Hussain F; Wittung-Stafshede P
    Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tetranuclear Cu(I) cluster in the metallochaperone protein CopZ.
    Hearnshaw S; West C; Singleton C; Zhou L; Kihlken MA; Strange RW; Le Brun NE; Hemmings AM
    Biochemistry; 2009 Oct; 48(40):9324-6. PubMed ID: 19746989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper trafficking: the solution structure of Bacillus subtilis CopZ.
    Banci L; Bertini I; Del Conte R; Markey J; Ruiz-Dueñas FJ
    Biochemistry; 2001 Dec; 40(51):15660-8. PubMed ID: 11747441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and structure of a Zn2+ and [2Fe-2S]-containing copper chaperone from Archaeoglobus fulgidus.
    Sazinsky MH; LeMoine B; Orofino M; Davydov R; Bencze KZ; Stemmler TL; Hoffman BM; Argüello JM; Rosenzweig AC
    J Biol Chem; 2007 Aug; 282(35):25950-9. PubMed ID: 17609202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR structure and metal interactions of the CopZ copper chaperone.
    Wimmer R; Herrmann T; Solioz M; Wüthrich K
    J Biol Chem; 1999 Aug; 274(32):22597-603. PubMed ID: 10428839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of copper transfer from a chaperone to its target protein mediated by complex formation.
    Kay KL; Zhou L; Tenori L; Bradley JM; Singleton C; Kihlken MA; Ciofi-Baffoni S; Le Brun NE
    Chem Commun (Camb); 2017 Jan; 53(8):1397-1400. PubMed ID: 28078344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of absolute acidity constants in water with a polarizable force field: substituted phenols, methanol, and imidazole.
    Kaminski GA
    J Phys Chem B; 2005 Mar; 109(12):5884-90. PubMed ID: 16851640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper.
    Banci L; Bertini I; Del Conte R
    Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry of B. subtilis CopZ: Cu(i)-binding and interactions with bacillithiol.
    Kay KL; Hamilton CJ; Le Brun NE
    Metallomics; 2016 Jul; 8(7):709-19. PubMed ID: 27197762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic polarization is crucial for reproducing pKa shifts of carboxylic residues in Turkey ovomucoid third domain.
    Macdermaid CM; Kaminski GA
    J Phys Chem B; 2007 Aug; 111(30):9036-44. PubMed ID: 17602581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.