These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Improved building up a model of toxicity towards Pimephales promelas by the Monte Carlo method. Toropova AP; Toropov AA; Raskova M; Raska I Environ Toxicol Pharmacol; 2016 Dec; 48():278-285. PubMed ID: 27863338 [TBL] [Abstract][Full Text] [Related]
4. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas). Cassotti M; Ballabio D; Todeschini R; Consonni V SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951 [TBL] [Abstract][Full Text] [Related]
5. Does the Index of Ideality of Correlation Detect the Better Model Correctly? Toropova AP; Toropov AA Mol Inform; 2019 Aug; 38(8-9):e1800157. PubMed ID: 30725522 [TBL] [Abstract][Full Text] [Related]
9. QSAR models for toxicity of organic substances to Daphnia magna built up by using the CORAL freeware. Toropova AP; Toropov AA; Benfenati E; Gini G Chem Biol Drug Des; 2012 Mar; 79(3):332-8. PubMed ID: 22136580 [TBL] [Abstract][Full Text] [Related]
10. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). Papa E; Villa F; Gramatica P J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902 [TBL] [Abstract][Full Text] [Related]
11. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368 [TBL] [Abstract][Full Text] [Related]
12. Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow. Niculescu SP; Atkinson A; Hammond G; Lewis M SAR QSAR Environ Res; 2004 Aug; 15(4):293-309. PubMed ID: 15370419 [TBL] [Abstract][Full Text] [Related]
13. SMILES-based QSAR model for arylpiperazines as high-affinity 5-HT(1A) receptor ligands using CORAL. Veselinović AM; Milosavljević JB; Toropov AA; Nikolić GM Eur J Pharm Sci; 2013 Feb; 48(3):532-41. PubMed ID: 23287365 [TBL] [Abstract][Full Text] [Related]
14. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
15. CORAL: QSPR model of water solubility based on local and global SMILES attributes. Toropov AA; Toropova AP; Benfenati E; Gini G; Leszczynska D; Leszczynski J Chemosphere; 2013 Jan; 90(2):877-80. PubMed ID: 22921649 [TBL] [Abstract][Full Text] [Related]
17. CORAL: Monte Carlo Method as a Tool for the Prediction of the Bioconcentration Factor of Industrial Pollutants. Toropova AP; Toropov AA; Martyanov SE; Benfenati E; Gini G; Leszczynska D; Leszczynski J Mol Inform; 2013 Feb; 32(2):145-54. PubMed ID: 27481276 [TBL] [Abstract][Full Text] [Related]
18. Use of the index of ideality of correlation to improve predictive potential for biochemical endpoints. Toropov AA; Toropova AP Toxicol Mech Methods; 2019 Jan; 29(1):43-52. PubMed ID: 30064284 [TBL] [Abstract][Full Text] [Related]
19. QSAR modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids. Toropova MA; Veselinović AM; Veselinović JB; Stojanović DB; Toropov AA Comput Biol Chem; 2015 Dec; 59 Pt A():126-30. PubMed ID: 26454621 [TBL] [Abstract][Full Text] [Related]
20. Mutagenicity: QSAR - quasi-QSAR - nano-QSAR. Toropova AP; Toropov AA Mini Rev Med Chem; 2015; 15(8):608-21. PubMed ID: 25694078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]