These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22371065)

  • 1. Intrinsic characteristics of Cr⁶⁺-resistant bacteria isolated from an electroplating industry polluted soils for plant growth-promoting activities.
    Hemambika B; Kannan VR
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1653-67. PubMed ID: 22371065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard.
    Rajkumar M; Nagendran R; Lee KJ; Lee WH; Kim SZ
    Chemosphere; 2006 Feb; 62(5):741-8. PubMed ID: 15982703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium.
    Shim J; Kim JW; Shea PJ; Oh BT
    J Basic Microbiol; 2015 May; 55(5):652-8. PubMed ID: 25283159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil.
    Wani PA; Khan MS; Zaidi A
    Curr Microbiol; 2007 Mar; 54(3):237-43. PubMed ID: 17294325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C.
    Rajkumar M; Ma Y; Freitas H
    J Environ Manage; 2013 Oct; 128():973-80. PubMed ID: 23895909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals.
    Rajkumar M; Freitas H
    Chemosphere; 2008 Mar; 71(5):834-42. PubMed ID: 18164365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.
    Rajkumar M; Ma Y; Freitas H
    J Basic Microbiol; 2008 Dec; 48(6):500-8. PubMed ID: 18785659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard.
    Rajkumar M; Freitas H
    Bioresour Technol; 2008 Jun; 99(9):3491-8. PubMed ID: 17826991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria.
    Ma Y; Rajkumar M; Freitas H
    J Hazard Mater; 2009 Jul; 166(2-3):1154-61. PubMed ID: 19147283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities.
    Ahmad F; Ahmad I; Khan MS
    Microbiol Res; 2008; 163(2):173-81. PubMed ID: 16735107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp.
    Ma Y; Rajkumar M; Freitas H
    Chemosphere; 2009 May; 75(6):719-25. PubMed ID: 19232424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress.
    Karthik C; Elangovan N; Kumar TS; Govindharaju S; Barathi S; Oves M; Arulselvi PI
    Microbiol Res; 2017 Nov; 204():65-71. PubMed ID: 28870293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil.
    Masood F; Malik A
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):114-9. PubMed ID: 21181113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+.
    Camargo FA; Okeke BC; Bento FM; Frankenberger WT
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):569-73. PubMed ID: 12679851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant growth promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains.
    Javaid M; Sultan S
    J Basic Microbiol; 2013 May; 53(5):420-8. PubMed ID: 22736528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.
    Megharaj M; Avudainayagam S; Naidu R
    Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr
    Bruno LB; Karthik C; Ma Y; Kadirvelu K; Freitas H; Rajkumar M
    Chemosphere; 2020 Apr; 244():125521. PubMed ID: 31812764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India.
    Mishra RR; Dhal B; Dutta SK; Dangar TK; Das NN; Thatoi HN
    J Hazard Mater; 2012 Aug; 227-228():219-26. PubMed ID: 22677051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater.
    Rehman A; Zahoor A; Muneer B; Hasnain S
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):25-9. PubMed ID: 18498008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.
    Li K; Ramakrishna W
    J Hazard Mater; 2011 May; 189(1-2):531-9. PubMed ID: 21420236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.