These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22371565)

  • 1. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion.
    Lee SW; McDowell MT; Berla LA; Nix WD; Cui Y
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4080-5. PubMed ID: 22371565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Dependent Fracture Resistance of Silicon Nanopillars during Electrochemical Lithiation.
    Kim Y; Yeom SJ; Yoo J; Yun J; Lee HW; Lee SW
    Nano Lett; 2022 Aug; 22(16):6631-6636. PubMed ID: 35950996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous shape changes of silicon nanopillars by electrochemical lithiation.
    Lee SW; McDowell MT; Choi JW; Cui Y
    Nano Lett; 2011 Jul; 11(7):3034-9. PubMed ID: 21657250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
    Pharr M; Zhao K; Wang X; Suo Z; Vlassak JJ
    Nano Lett; 2012 Sep; 12(9):5039-47. PubMed ID: 22889293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
    McDowell MT; Lee SW; Nix WD; Cui Y
    Adv Mater; 2013 Sep; 25(36):4966-85. PubMed ID: 24038172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface coating mediated swelling and fracture of silicon nanowires during lithiation.
    Sandu G; Brassart L; Gohy JF; Pardoen T; Melinte S; Vlad A
    ACS Nano; 2014 Sep; 8(9):9427-36. PubMed ID: 25133525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires.
    Yang H; Huang S; Huang X; Fan F; Liang W; Liu XH; Chen LQ; Huang JY; Li J; Zhu T; Zhang S
    Nano Lett; 2012 Apr; 12(4):1953-8. PubMed ID: 22439984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale.
    Jung SC; Choi JW; Han YK
    Nano Lett; 2012 Oct; 12(10):5342-7. PubMed ID: 22984966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.
    An Y; Wood BC; Ye J; Chiang YM; Wang YM; Tang M; Jiang H
    Phys Chem Chem Phys; 2015 Jul; 17(27):17718-28. PubMed ID: 26082019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ TEM of two-phase lithiation of amorphous silicon nanospheres.
    McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y
    Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy.
    Wei CY; Sun YT; Liu YL; Liu TR; Wen CY
    Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.
    Cui LF; Ruffo R; Chan CK; Peng H; Cui Y
    Nano Lett; 2009 Jan; 9(1):491-5. PubMed ID: 19105648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive flow in silicon electrodes assisted by the insertion of lithium.
    Zhao K; Tritsaris GA; Pharr M; Wang WL; Okeke O; Suo Z; Vlassak JJ; Kaxiras E
    Nano Lett; 2012 Aug; 12(8):4397-403. PubMed ID: 22830634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.
    Osiak MJ; Armstrong E; Kennedy T; Torres CM; Ryan KM; O'Dwyer C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8195-202. PubMed ID: 23952971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast electrochemical lithiation of individual Si nanowire anodes.
    Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY
    Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.