These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22371832)

  • 41. Emerging local delivery strategies to enhance bone regeneration.
    Elangovan S; Gajendrareddy P; Ravindran S; Salem AK
    Biomed Mater; 2020 Nov; 15(6):062001. PubMed ID: 32647095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tissue engineering and stem cell application of urethroplasty: from bench to bedside.
    Fu Q; Cao YL
    Urology; 2012 Feb; 79(2):246-53. PubMed ID: 22014966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Orchestrating cell/material interactions for tissue engineering of surgical implants.
    de Mel A; Seifalian AM; Birchall MA
    Macromol Biosci; 2012 Aug; 12(8):1010-21. PubMed ID: 22777725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell-scaffold interactions in the bone tissue engineering triad.
    Murphy CM; O'Brien FJ; Little DG; Schindeler A
    Eur Cell Mater; 2013 Sep; 26():120-32. PubMed ID: 24052425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bone tissue engineering: state of the union.
    Shrivats AR; McDermott MC; Hollinger JO
    Drug Discov Today; 2014 Jun; 19(6):781-6. PubMed ID: 24768619
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small Animal Models.
    da Silva Morais A; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1059():423-439. PubMed ID: 29736585
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region.
    Zhang Z
    Front Med; 2011 Dec; 5(4):401-13. PubMed ID: 22198752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of tissue-engineered bone from different stem cell sources for maxillary sinus floor augmentation: a study in a canine model.
    Yu BH; Zhou Q; Wang ZL
    J Oral Maxillofac Surg; 2014 Jun; 72(6):1084-92. PubMed ID: 24576438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New bioactive glass scaffolds with exceptional qualities for bone tissue regeneration: response of osteoblasts and osteoclasts.
    Kowal TJ; Hahn NC; Eider S; Marzillier JY; Fodera DM; Thamma U; Jain H; Falk MM
    Biomed Mater; 2018 Jan; 13(2):025005. PubMed ID: 29033393
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering.
    Langenbach F; Naujoks C; Smeets R; Berr K; Depprich R; Kübler N; Handschel J
    Clin Oral Investig; 2013 Jan; 17(1):9-17. PubMed ID: 22695872
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration.
    Annibali S; Cicconetti A; Cristalli MP; Giordano G; Trisi P; Pilloni A; Ottolenghi L
    J Craniofac Surg; 2013 May; 24(3):866-71. PubMed ID: 23714898
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K
    J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chitosan/gelatin scaffolds support bone regeneration.
    Georgopoulou A; Papadogiannis F; Batsali A; Marakis J; Alpantaki K; Eliopoulos AG; Pontikoglou C; Chatzinikolaidou M
    J Mater Sci Mater Med; 2018 May; 29(5):59. PubMed ID: 29730855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advanced reconstructive technologies for periodontal tissue repair.
    Ramseier CA; Rasperini G; Batia S; Giannobile WV
    Periodontol 2000; 2012 Jun; 59(1):185-202. PubMed ID: 22507066
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone regeneration through transplantation of genetically modified cells.
    Blum JS; Barry MA; Mikos AG
    Clin Plast Surg; 2003 Oct; 30(4):611-20. PubMed ID: 14621309
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regenerative Medicine for Periodontal and Peri-implant Diseases.
    Larsson L; Decker AM; Nibali L; Pilipchuk SP; Berglundh T; Giannobile WV
    J Dent Res; 2016 Mar; 95(3):255-66. PubMed ID: 26608580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biologically active substances in bone morphogenesis. Literature review.
    Bojarskas S; Simuntis R
    Stomatologija; 2014; 16(4):153-60. PubMed ID: 25896040
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration.
    Ahn SH; Lee HJ; Kim GH
    Biomacromolecules; 2011 Dec; 12(12):4256-63. PubMed ID: 22070169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.