These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 22372371)
1. Role of the Tyr-Cys cross-link to the active site properties of galactose oxidase. Rokhsana D; Howells AE; Dooley DM; Szilagyi RK Inorg Chem; 2012 Mar; 51(6):3513-24. PubMed ID: 22372371 [TBL] [Abstract][Full Text] [Related]
2. Structure of the oxidized active site of galactose oxidase from realistic in silico models. Rokhsana D; Dooley DM; Szilagyi RK J Am Chem Soc; 2006 Dec; 128(49):15550-1. PubMed ID: 17147339 [TBL] [Abstract][Full Text] [Related]
3. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA. Chaplin AK; Bernini C; Sinicropi A; Basosi R; Worrall JAR; Svistunenko DA Angew Chem Int Ed Engl; 2017 Jun; 56(23):6502-6506. PubMed ID: 28464409 [TBL] [Abstract][Full Text] [Related]
4. Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron O Cowley RE; Cirera J; Qayyum MF; Rokhsana D; Hedman B; Hodgson KO; Dooley DM; Solomon EI J Am Chem Soc; 2016 Oct; 138(40):13219-13229. PubMed ID: 27626829 [TBL] [Abstract][Full Text] [Related]
6. Insights into the nature of the hydrogen bonding of *Tyr272 in apo-galactose oxidase. Benisvy L; Hammond D; Parker DJ; Davies ES; Garner CD; McMaster J; Wilson C; Neese F; Bothe E; Bittl R; Teutloff C J Inorg Biochem; 2007 Nov; 101(11-12):1859-64. PubMed ID: 17826837 [TBL] [Abstract][Full Text] [Related]
7. The electronic structure of the Cys-Tyr(*) free radical in galactose oxidase determined by EPR spectroscopy. Lee YK; Whittaker MM; Whittaker JW Biochemistry; 2008 Jun; 47(25):6637-49. PubMed ID: 18512952 [TBL] [Abstract][Full Text] [Related]
8. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Rogers MS; Hurtado-Guerrero R; Firbank SJ; Halcrow MA; Dooley DM; Phillips SE; Knowles PF; McPherson MJ Biochemistry; 2008 Sep; 47(39):10428-39. PubMed ID: 18771294 [TBL] [Abstract][Full Text] [Related]
9. Formation of Monofluorinated Radical Cofactor in Galactose Oxidase through Copper-Mediated C-F Bond Scission. Li J; Davis I; Griffith WP; Liu A J Am Chem Soc; 2020 Nov; 142(44):18753-18757. PubMed ID: 33091303 [TBL] [Abstract][Full Text] [Related]
10. Systematic development of computational models for the catalytic site in galactose oxidase: impact of outer-sphere residues on the geometric and electronic structures. Rokhsana D; Dooley DM; Szilagyi RK J Biol Inorg Chem; 2008 Mar; 13(3):371-83. PubMed ID: 18057969 [TBL] [Abstract][Full Text] [Related]
11. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the phenoxyl radical in model complexes for the Cu(B) site of cytochrome c oxidase: steady-state and transient absorption measurements, UV resonance raman spectroscopy, EPR spectroscopy, and DFT calculations for M-BIAIP. Nagano Y; Liu JG; Naruta Y; Ikoma T; Tero-Kubota S; Kitagawa T J Am Chem Soc; 2006 Nov; 128(45):14560-70. PubMed ID: 17090040 [TBL] [Abstract][Full Text] [Related]
13. Snapshots of a metamorphosing Cu(II) ground state in a galactose oxidase-inspired complex. Pratt RC; Mirica LM; Stack TD Inorg Chem; 2004 Dec; 43(25):8030-9. PubMed ID: 15578842 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure. Basumallick L; Sarangi R; DeBeer George S; Elmore B; Hooper AB; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2005 Mar; 127(10):3531-44. PubMed ID: 15755175 [TBL] [Abstract][Full Text] [Related]
16. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V). Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669 [TBL] [Abstract][Full Text] [Related]
17. Protein oxidation involved in Cys-Tyr post-translational modification. Hromada SE; Hilbrands AM; Wolf EM; Ross JL; Hegg TR; Roth AG; Hollowell MT; Anderson CE; Benson DE J Inorg Biochem; 2017 Nov; 176():168-174. PubMed ID: 28917639 [TBL] [Abstract][Full Text] [Related]
18. Effect of ortho-SR groups on O-H bond strength and H-atom donating ability of phenols: a possible role for the Tyr-Cys link in galactose oxidase active site? Amorati R; Catarzi F; Menichetti S; Pedulli GF; Viglianisi C J Am Chem Soc; 2008 Jan; 130(1):237-44. PubMed ID: 18072772 [TBL] [Abstract][Full Text] [Related]
19. Sulfur K-edge spectroscopic investigation of second coordination sphere effects in oxomolybdenum-thiolates: relationship to molybdenum-cysteine covalency and electron transfer in sulfite oxidase. Peariso K; Helton ME; Duesler EN; Shadle SE; Kirk ML Inorg Chem; 2007 Feb; 46(4):1259-67. PubMed ID: 17291118 [TBL] [Abstract][Full Text] [Related]
20. Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine. Zhou Q; Hu M; Zhang W; Jiang L; Perrett S; Zhou J; Wang J Angew Chem Int Ed Engl; 2013 Jan; 52(4):1203-7. PubMed ID: 23197358 [No Abstract] [Full Text] [Related] [Next] [New Search]